GPU-BASED CSP FOR ACTION
® PLANNING

‘ Stéphane Cardon
® CREC Saint-Cyr




MOTIVATIONS
F.E.A.R.! : First GAME using planning

Better feeling of realism

Now Shadow of Mordor (same game development
studio) :

50 Non-Playable Characters at same time
Is-it possible to plan 100 or 1000 NPCs ?

Military simulation, Wargame
Strong constraint : compute solution in one frame (16 ms)

1. ORKIN, J. 2006. Three states and a plan : The A.L. of F.E.A.R.



PLAN

1. PLANNING IN GAMES

BINARY CSP FOR PLANNING
SOLVING BINARY CSP USING GPU
CONCLUSION

L




ZOMBIE EXAMPLE

One goal : eating
Possible actions to reach this goal :
Wait, Locate noise, Get closer, Attack, Eat

Effects, for planning, are supposed to be certain :
After attacking, player will be dead
In fact, player may be dead



1. PLANNING IN GAMES

ACTIONS OF A ZOMBIE

NoiselsHeard (N1H) —“NiH A PiS

PlayerInSight (PiS) w —PiS A PiR

PlayerInRange (PiR) M —PiR A PiD
PlayerIsDead (PiD) n —PiD

—NiH A =PiS A =PiR A =PiD m




PLANNING IN GAMES

Finding a sequence of actions to reach the goal
from 1nitial state

Uncertainty on effects :
Plans of short size?
Re-plans regularly

Decouple game world state to decision state :
Player and Zombie positions/Player is in sight

2. JACOPIN, K. 2014. Game Al planning analytics.



BINARY CSP FOR PLANNING

WHY CSP ?

Previous work shows that 1t 1s possible to
Increase resolution of planning problem seen as

CSP one?

3. VAN BEEK, P., and CHEN, X. 1999. CPlan : A constraint programming
approach to planning.



2. BINARY CSP FOR PLANNING

WRITE CSP FROM PLANNING PROBLEM#*

o Fix an horizon : the length of the biggest solution

o For a Zombie, size 1s 4 :
» Locate noise
» Get closer
» Attack
+ Eat

4. POOLE, D. L., and MACKWORTH, A. K. 2010. Artificial Intelligence : Foundations of
computational agents.




CSP VARIABLES

The action to do at stage ¢ : Attack,

Variables of planning problem for each stage :
Noise 1s heard,




CSP CONSTRAINTS

Pre-conditions of planning actions
Effects of planning actions
Only one action should be chosen at stage ¢

Unary constraints to represents initial and goal
states



ZOMBIE-CSP

Pre-condition

2. BINARY CSP FOR PLANNING

One action
{(1,0,1),(0,0,0)}

LocateNoise,

G,
GetCloser,

Cy
Attack,

Eat,




BINARY CSP

Any non-binary problem can be transformed in
binary ones (e.g. using Dual representation®) :
VariablePuval = constraint
value = a tuple

ConstraintPval = binary between two constraints
having variables in common

tuple = couple of tuples having same values for variables in
common

5. F. Bacchus, X. Chen, P. van Beek and T. Walsh; Binary vs. Non-Binary Constraints



2. BINARY CSP FOR PLANNING

Z.OMBIE BINARY CSP

1a=(0,0),
b=(1,1);

Cq

1d=(1,0,1),e=(0,0,0);




CUDA IN BRIEF

Based on Simple Instruction Multiple Datas
(SIMD) architecture seen as SIMT (Threads)

A multiprocessor unit (SM or SMX) execute a
warp of 32 threads
In SMX, hide latency of memory access by calculus
Warp access 32 successive elements (a thread 1)

Branching must be avoided (unused threads) or
reduced to two branches

Threads are organized in a block and blocks in a
orid



GPU-ARC-CONSISTENCY

Based on AC3

Launch a grid of N blocks composed of D, . AC-
threads

An AC-thread work with X=a

Consider all variables Y in relation with X
Test each value b of domain of Y to find a support
If no support is found, mark a as deleted in Dy

Re-launch grid until no values are deleted



EXPERIMENTS

On quasi-random, hanoi, graph coloring, n-
queens and bandwidth coloring problems

Speed-up (time of CPU AC3/time of GPU AC)
obtained varying between 0.33 to 2.43

Worst-case : hanoi problem (re-launch grid, up to
60 times)



GPU-PATH-CONSISTENCY (1/2)

GPU needs lot of calculus in comparison of loaded
datas to be efficient

Based on PC-2001
Grid of ¥ X(;V_l) blocks of 1024 PC-threads

A block concern two variables X and Y (s.t. X is
“defined before”Y)

PC-threads must deal with all couples (X=a,Y=Db)
with coalescent access




GPU-PATH-CONSISTENCY (2/2)

Consider all dedicated couple (a,b) :

For each variable Z in relation with X and Y :

Test all possible values c of Z in order to find support for
X=a and Y=b

If no support found, mark couple (a,b) as deleted in relation
between X and Y

Re-launch grid until no deletion
Launch GPU-AC



MORE EXPERIMENTS

On random problems :
40 variables
Domains of maximal size of 25

No more than 180 constraints

Characterized by :

Tightness : probability of having two values in
relation

Density : probability of having a constraint between
two variables



RESULTS

4. CONCLUSION

Tightness Density Speed-up Speed-up
GPU AC GPU PC

0.96
0.2 0.53
0.5 0.23
0.65 0.17
0.8 0.13
0.9 0.1

o Tightness and Density are
around 0.5 for Zombie

binary CSP

0.69
0.73
0.77
0.97
2.01

10.23
8.66
6.06
3.44

2.1
1.54

GPU-PC seems to

be efficient :

Maintaining GPU-

PC algorithm ?




CONCLUSION/FUTURE WORKS

Even with a speed-up of 2 or more for PC, it 1s
not practical for real-time solving (less than 16
ms) :

Pre-resolution phase for modeling ?

Other models or modeling ?

Current work :

Grounded-planning on GPU

Apply on blocks world (5 blocks, 256 problems in
parallel, less or equal than 12 ms)®

Development : toy game with hundreds of Zombies

6. S. Cardon and E. Jacopin; Poster - Game Al planning : Which GPU for how many NPCs?



