
GPU-BASED CSP FOR ACTION

PLANNING
Stéphane Cardon

CREC Saint-Cyr

MOTIVATIONS

 F.E.A.R.1 : First GAME using planning

 Better feeling of realism

 Now Shadow of Mordor (same game development

studio) :

 50 Non-Playable Characters at same time

2

1. ORKIN, J. 2006. Three states and a plan : The A.I. of F.E.A.R.

 Is-it possible to plan 100 or 1000 NPCs ?
 Military simulation, Wargame

 Strong constraint : compute solution in one frame (16 ms)

PLAN

1. PLANNING IN GAMES

2. BINARY CSP FOR PLANNING

3. SOLVING BINARY CSP USING GPU

4. CONCLUSION

3

ZOMBIE EXAMPLE

 One goal : eating

 Possible actions to reach this goal :

 Wait, Locate noise, Get closer, Attack, Eat

 Effects, for planning, are supposed to be certain :

 After attacking, player will be dead

 In fact, player may be dead

4

1. PLANNING IN GAMES

ACTIONS OF A ZOMBIE

5

Wait

Eat

Attack

GetCloser

LocateNoise NoiseIsHeard (NiH)

PlayerInSight (PiS)

PlayerInRange (PiR)

PlayerIsDead (PiD)

¬NiH ˄ ¬PiS ˄ ¬PiR ˄ ¬PiD

¬NiH ˄ PiS

¬PiS ˄ PiR

¬PiR ˄ PiD

¬PiD

1. PLANNING IN GAMES

PLANNING IN GAMES

 Finding a sequence of actions to reach the goal

from initial state

 Uncertainty on effects :

 Plans of short size2

 Re-plans regularly

 Decouple game world state to decision state :

 Player and Zombie positions/Player is in sight

6

2. JACOPIN, É. 2014. Game AI planning analytics.

1. PLANNING IN GAMES

WHY CSP ?

 Previous work shows that it is possible to

increase resolution of planning problem seen as

CSP one3

7

3. VAN BEEK, P., and CHEN, X. 1999. CPlan : A constraint programming

approach to planning.

2. BINARY CSP FOR PLANNING

WRITE CSP FROM PLANNING PROBLEM4

 Fix an horizon : the length of the biggest solution

 For a Zombie, size is 4 :

 Locate noise

 Get closer

 Attack

 Eat

8

4. POOLE, D. L., and MACKWORTH, A. K. 2010. Artificial Intelligence : Foundations of

computational agents.

2. BINARY CSP FOR PLANNING

CSP VARIABLES

 The action to do at stage t : Attackt

 Variables of planning problem for each stage :

Noise is heardt

9

2. BINARY CSP FOR PLANNING

CSP CONSTRAINTS

 Pre-conditions of planning actions

 Effects of planning actions

 Only one action should be chosen at stage t

 Unary constraints to represents initial and goal

states

10

2. BINARY CSP FOR PLANNING

{(1,0,1),(0,0,0)}

ZOMBIE-CSP

11

Wait1

Eat1

Attack1

GetCloser1

LocateNoise1 NiH0

PiS0

PiR0

PiD0

NiH1

PiS1

PiR1

PiD1

Pre-condition

Effect

One action

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

2. BINARY CSP FOR PLANNING

BINARY CSP

 Any non-binary problem can be transformed in

binary ones (e.g. using Dual representation5) :

 VariableDual = constraint

 value = a tuple

 ConstraintDual = binary between two constraints

having variables in common

 tuple = couple of tuples having same values for variables in

common

12

5. F. Bacchus, X. Chen, P. van Beek and T. Walsh; Binary vs. Non-Binary Constraints

2. BINARY CSP FOR PLANNING

ZOMBIE BINARY CSP

13

C4

C0 C1 C2 C3

C5

C6 C7 C8 C9

{a=(0,0),

b=(1,1)}

{d=(1,0,1),e=(0,0,0)}

1

{(a,e),

(b,d)}

2. BINARY CSP FOR PLANNING

CUDA IN BRIEF

 Based on Simple Instruction Multiple Datas

(SIMD) architecture seen as SIMT (Threads)

 A multiprocessor unit (SM or SMX) execute a

warp of 32 threads

 In SMX, hide latency of memory access by calculus

 Warp access 32 successive elements (a thread 1)

 Branching must be avoided (unused threads) or

reduced to two branches

 Threads are organized in a block and blocks in a

grid

14

3. SOLVING BINARY CSP USING GPU

GPU-ARC-CONSISTENCY

 Based on AC3

 Launch a grid of N blocks composed of Dmax AC-

threads

 An AC-thread work with X=a

 Consider all variables Y in relation with X

 Test each value b of domain of Y to find a support

 If no support is found, mark a as deleted in DX

 Re-launch grid until no values are deleted

15

3. SOLVING BINARY CSP USING GPU

EXPERIMENTS

 On quasi-random, hanoi, graph coloring, n-

queens and bandwidth coloring problems

 Speed-up (time of CPU AC3/time of GPU AC)

obtained varying between 0.33 to 2.43

 Worst-case : hanoi problem (re-launch grid, up to

60 times)

16

3. SOLVING BINARY CSP USING GPU

GPU-PATH-CONSISTENCY (1/2)

 GPU needs lot of calculus in comparison of loaded

datas to be efficient

 Based on PC-2001

 Grid of
𝑁 ×(𝑁−1)

2
 blocks of 1024 PC-threads

 A block concern two variables X and Y (s.t. X is

“defined before” Y)

 PC-threads must deal with all couples (X=a,Y=b)

with coalescent access

17

3. SOLVING BINARY CSP USING GPU

GPU-PATH-CONSISTENCY (2/2)

 Consider all dedicated couple (a,b) :

 For each variable Z in relation with X and Y :

 Test all possible values c of Z in order to find support for

X=a and Y=b

 If no support found, mark couple (a,b) as deleted in relation

between X and Y

 Re-launch grid until no deletion

 Launch GPU-AC

18

3. SOLVING BINARY CSP USING GPU

MORE EXPERIMENTS

 On random problems :

 40 variables

 Domains of maximal size of 25

 No more than 180 constraints

 Characterized by :

 Tightness : probability of having two values in

relation

 Density : probability of having a constraint between

two variables

19

3. SOLVING BINARY CSP USING GPU

RESULTS

Tightness Density Speed-up

GPU AC

Speed-up

GPU PC

0.1 0.96 0.7 10.23

0.2 0.53 0.69 8.66

0.5 0.23 0.73 6.06

0.65 0.17 0.77 3.44

0.8 0.13 0.97 2.1

0.9 0.1 2.01 1.54

20

 Tightness and Density are

around 0.5 for Zombie

binary CSP

GPU-PC seems to

be efficient :

Maintaining GPU-

PC algorithm ?

4. CONCLUSION

CONCLUSION/FUTURE WORKS

 Even with a speed-up of 2 or more for PC, it is

not practical for real-time solving (less than 16

ms) :

 Pre-resolution phase for modeling ?

 Other models or modeling ?

 Current work :

 Grounded-planning on GPU

 Apply on blocks world (5 blocks, 256 problems in

parallel, less or equal than 12 ms)6

 Development : toy game with hundreds of Zombies

21

6. S. Cardon and É. Jacopin; Poster - Game AI planning : Which GPU for how many NPCs?

4. CONCLUSION

