Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Relaxed Decision Diagrams for Delete-Free Planning

Augusto B. Corrêa Florian Pommerening Guillem Francès

University of Basel, Switzerland

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Agenda

Introduction

Motivation Delete-Free Planning Variable Assignment Problems Decision Diagrams

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Motivation

- New state space of a delete-free task Π^+
- Compute h^+ in this new state space
- Use it to solve Π⁺

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Delete-Free Planning

In a delete-free planning task Π^+ we have:

- a set of facts;
- a set of actions in the format $a = (pre_a, add_a)$;
- a cost function;
- a initial state s₀; and
- a set of goal facts;

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Delete-Free Planning

In a delete-free planning task Π^+ we have:

- a set of facts;
- a set of actions in the format $a = (pre_a, add_a)$;
- a cost function;
- a initial state s₀; and
- a set of goal facts;

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Variable Assignment Problems

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Variable Assignment Problems

- Given a set of variables V
- Assign each variable to a value
- Some assignments are solutions
- Every assignment has a cost

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Example: The Independent Set Problem¹

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Example: The Independent Set $\frac{\text{Problem}^1}{[1,2,3,4,5]}$

¹Example from ICAPS 2016 tutorial "*Decision Diagrams for Discrete Optimization*" from J. Hooker

¹Example from ICAPS 2016 tutorial "*Decision Diagrams for Discrete Optimization*" from J. Hooker

¹Example from ICAPS 2016 tutorial "*Decision Diagrams for Discrete Optimization*" from J. Hooker

¹Example from ICAPS 2016 tutorial "*Decision Diagrams for Discrete Optimization*" from J. Hooker

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Decision Diagrams

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Decision Diagrams

- a graph G divided in n layers L_1, L_2, \ldots, L_n
- a root node r and a terminal node t
- a set of variables V with finite domain D_v for all $v \in V$
- a cost function $w: V \times D_v \to \mathbb{R}$

Π⁺ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Decision Diagrams

- a graph G divided in n layers L_1, L_2, \ldots, L_n
- a root node r and a terminal node t
- a set of variables V with finite domain D_v for all $v \in V$
- a cost function $w: V imes D_v o \mathbb{R}$

Remark

Two nodes in a same layer can select different variables to assign.

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Agenda

Introduction

Π^+ as a Decision Diagram

Definition Constructing a Decision Diagram for Π^+ Some Caveats Selecting an Applicable Action

Relaxed Decision Diagrams

Experiments

Conclusion

Π⁺ as a Decision Diagram ●○○○○○○

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

How to represent Π^+ as a decision diagram?

 Π^+ as a Decision Diagram $\bullet \circ \circ \circ \circ \circ \circ$

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

How to represent Π^+ as a decision diagram?

- The set of actions A is the set of variables
- Assign each action to 0 or 1
- Each node represents a state*
- A path from r to t is a plan
- Cost of a plan = cost of the actions assigned to 1

 Π^+ as a Decision Diagram $0 \bullet 0 \circ 0 \circ 0$

Relaxed Decision Diagrams

Experiments

Conclusion

Properties of a Node

 Π^+ as a Decision Diagram $0 \bullet 0 \circ 0 \circ 0$

Relaxed Decision Diagrams

Experiments

Conclusion

Properties of a Node

- Each node $g \in G$ has two properties:
 - F(g), a set of facts (a state)
 - N(g), a set of forbidden actions

 Π^+ as a Decision Diagram $\circ \circ \circ \circ \circ \circ \circ \circ$

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Constructing a Decision Diagram for Π^+

 Π^+ as a Decision Diagram $\circ \circ \circ \circ \circ \circ \circ \circ$

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Constructing a Decision Diagram for Π^+

$$s_0 \coloneqq \{\}$$

 $A \coloneqq \{v_0, \ldots, v_n\}$

 Π^+ as a Decision Diagram $\circ \circ \circ \circ \circ \circ \circ \circ$

Relaxed Decision Diagrams

Experiments

Conclusion

Constructing a Decision Diagram for Π^+

r

 $s_0 := \{\}$ $A := \{v_0, \dots, v_n\}$ $r := (F(r) = s_0, N(r) = \emptyset)$

Relaxed Decision Diagrams

Experiments

Conclusion

Constructing a Decision Diagram for Π^+

$$s_{0} := \{\}$$

$$A := \{v_{0}, \dots, v_{n}\}$$

$$r := (F(r) = s_{0}, N(r) = \emptyset)$$

$$a := (F(a) = s_{0}, N(a) = \{v_{0}\})$$

$$b := (F(b) = s_{0} \cup add_{v_{0}}, N(b) = \{v_{0}\})$$

Relaxed Decision Diagrams

Experiments

Conclusion

Constructing a Decision Diagram for Π^+

$$s_{0} := \{\}$$

$$A := \{v_{0}, \dots, v_{n}\}$$

$$r := (F(r) = s_{0}, N(r) = \emptyset)$$

$$a := (F(a) = s_{0}, N(a) = \{v_{0}\})$$

$$b := (F(b) = s_{0} \cup add_{v_{0}}, N(b) = \{v_{0}\})$$

$$c := (F(c) = s_{0}, N(c) = \{v_{0}, v_{1}\})$$

$$d := (F(d) = s_{0} \cup add_{v_{1}}, N(d) = \{v_{0}, v_{1}\})$$

$$e := (F(e) = s_{0} \cup add_{v_{0}}, N(e) = \{v_{0}, v_{2}\})$$

$$f := (F(f) = s_{0} \cup add_{v_{0}} \cup add_{v_{2}}, N(f) = \{v_{0}, v_{2}\})$$

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Some Caveats

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Some Caveats

- Merge nodes representing goal states into t
- A path from r to t represents a partial assignment

 Π^+ as a Decision Diagram 000000

Relaxed Decision Diagrams

Experiments

Conclusion

Selecting an Applicable Action

An action $a \in A$ can be selected by a node g iff:

 Π^+ as a Decision Diagram $\circ \circ \circ \circ \circ \circ \bullet$

Relaxed Decision Diagrams

Experiments

Conclusion

Selecting an Applicable Action

An action $a \in A$ can be selected by a node g iff:

- a is not forbidden: $a \notin N(g)$
- a is applicable: $pre_a \subseteq F(g)$
- a is not useless: $\operatorname{add}_a \nsubseteq F(g)$

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Agenda

Introduction

Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Relaxed Decision Diagrams in General Relaxed Decision Diagram for Π^+

Experiments

Conclusion

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Relaxed Decision Diagrams

- Decision diagrams can be exponentially large
- We can create a relaxed version with bounded size

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Limited Width

- Limit the width (number of nodes) of the layers to ω
- If $|L_i| > \omega$, we combine nodes on L_i
- We need to find a good way to combine the nodes

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Limited Width

- Limit the width (number of nodes) of the layers to ω
- If $|L_i| > \omega$, we combine nodes on L_i
- We need to find a good way to combine the nodes

Two conditions (for minimization problems)

- All solutions to the original problem must be preserved
- No solution cost can be overestimated

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Limited Width

- Limit the width (number of nodes) of the layers to ω
- If $|L_i| > \omega$, we combine nodes on L_i
- We need to find a good way to combine the nodes

Two conditions (for minimization problems)

- All solutions to the original problem must be preserved
- No solution cost can be overestimated

If both conditions hold, then the combination is admissible

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Construction of a Relaxed Decision Diagram

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Construction of a Relaxed Decision Diagram

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Construction of a Relaxed Decision Diagram

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Relaxed Decision Diagram for Π^+

• How to combine nodes in a same layer?

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Relaxed Decision Diagram for Π^+

- How to combine nodes in a same layer?
- Combine a pair of nodes u, v into a single node w

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Relaxed Decision Diagram for Π^+

- How to combine nodes in a same layer?
- Combine a pair of nodes *u*, *v* into a single node *w*
- Use the following combination function

$$F(w) = F(u) \cup F(v)$$
$$N(w) = N(u) \cap N(v)$$

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Relaxed Decision Diagram for Π^+

- How to combine nodes in a same layer?
- Combine a pair of nodes u, v into a single node w
- Use the following combination function

$$F(w) = F(u) \cup F(v)$$
$$N(w) = N(u) \cap N(v)$$

Theorem

This combination function is admissible.

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000 Conclusion

Relaxed Decision Diagram for Π^+

- How to combine nodes in a same layer?
- Combine a pair of nodes u, v into a single node w
- Use the following combination function

$$F(w) = F(u) \cup F(v)$$
$$N(w) = N(u) \cap N(v)$$

Theorem

This combination function is admissible.

Observation

The shortest path from r to t is a lower bound for h^+ .

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Constructing a Decision Diagram for Π^+

$$s_{0} := \{\}$$

$$A := \{v_{0}, \dots, v_{n}\}$$

$$r := (F(r) = s_{0}, N(r) = \emptyset)$$

$$a := (F(a) = s_{0}, N(a) = \{v_{0}\})$$

$$b := (F(b) = s_{0} \cup add_{v_{0}}, N(b) = \{v_{0}\})$$

$$c := (F(c) = s_{0}, N(c) = \{v_{0}, v_{1}\})$$

$$d := (F(d) = s_{0} \cup add_{v_{1}}, N(d) = \{v_{0}, v_{1}\})$$

$$e := (F(e) = s_{0} \cup add_{v_{0}}, N(e) = \{v_{0}, v_{2}\})$$

$$f := (F(f) = s_{0} \cup add_{v_{0}} \cup add_{v_{2}}, N(f) = \{v_{0}, v_{2}\})$$

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Constructing a Decision Diagram for Π^+

$$s_{0} := \{\}$$

$$A := \{v_{0}, \dots, v_{n}\}$$

$$r := (F(r) = s_{0}, N(r) = \emptyset)$$

$$a := (F(a) = s_{0}, N(a) = \{v_{0}\})$$

$$b := (F(b) = s_{0} \cup \operatorname{add}_{v_{0}}, N(b) = \{v_{0}\})$$

$$c := (F(c) = s_{0}, N(c) = \{v_{0}, v_{1}\})$$

$$w := (F(w) = s_{0} \cup \operatorname{add}_{v_{0}} \cup \operatorname{add}_{v_{1}}, N(w) = \{v_{0}\})$$

$$f := (F(f) = s_{0} \cup \operatorname{add}_{v_{0}} \cup \operatorname{add}_{v_{2}}, N(f) = \{v_{0}, v_{2}\})$$

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Selecting Nodes to Combine

• Lower bound obtained depends on the nodes combined

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Selecting Nodes to Combine

- Lower bound obtained depends on the nodes combined
- Two functions for nodes selection:
 - Hamming distance between nodes
 - Random Selection

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Agenda

Introduction

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments Selecting Nodes based on Hamming Distance Selecting Random Nodes

Conclusion

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Experimental Setup

- Using Fast Downward with 3.6GB and 30 minutes per task
- Considering all tasks as unit-cost
- LM-cut to compute *h*⁺
- Six different values for ω:
 - 64, 128, 256, 512, 1024 and ∞
- Compared two nodes selection functions:
 - Hamming Distance
 - Random Node Selection

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Hamming Distance with different ω

 $\label{eq:unsolved} \begin{array}{l} {\sf unsolved} = {\sf diagram \ construction \ did \ not \ terminate} \\ = {\sf no \ lower \ bound \ found} \end{array}$

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Hamming Distance w/ $\omega = 128$ vs h^+

Introduction 00000	Π ⁺ as a Decision Diagram 0000000	Relaxed Decision Diagrams	Experiments 0000000	Conclusion
	С			

How many instances we could find an optimal plan?

	h^+	$\omega = \infty$	$\omega = 64$	$\omega = 128$	$\omega = 256$	$\omega = 512$	$\omega = 1024$
# valid plans (1667)	921	171	135	155	146	130	122
# of domains (57)	55	28	21	28	28	23	19

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Selecting Random Nodes

- change the nodes selection function to a random selection
- results report the avg. over 10 runs
 - only for $\omega = \{128, 256\}$
- with $\omega = 128$ the number of optimal plans drops to 131.4
- with $\omega = 256$ the number of optimal plans drops to 139.9

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments 0000000

Random Selection w/ $\omega = 128$ vs h^+

Average of 10 runs w/ max. width of 128

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Lower bounds w/ different nodes selection

Average of 10 runs w/ max. width of 128

 Π^+ as a Decision Diagram $_{0000000}$

Relaxed Decision Diagrams

Experiments

Conclusion

Agenda

Introduction

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Introduction							
00000							

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Conclusion

Contributions:

- Proposed a new state space representation for delete-free tasks
- Analyzed theoretically some properties of this new state space
- Experiments showed this technique is not yet informative

 Π^+ as a Decision Diagram

Relaxed Decision Diagrams

Experiments

Conclusion

Conclusion

Contributions:

- Proposed a new state space representation for delete-free tasks
- Analyzed theoretically some properties of this new state space
- Experiments showed this technique is not yet informative

Future Work:

- Better strategies for action selection
 - e.g., greedily select landmark actions whenever possible
- Better strategies for node selection
 - e.g., consider g-values to avoid "shortcuts"
- Refinement strategies
 - e.g., start with a diagram with width equals to 1 and split combined nodes

 Π^+ as a Decision Diagram 0000000

Relaxed Decision Diagrams

Experiments

Conclusion

Conclusion

Contributions:

- Proposed a new state space representation for delete-free tasks
- Analyzed theoretically some properties of this new state space
- Experiments showed this technique is not yet informative

Future Work:

- Better strategies for action selection
 - e.g., greedily select landmark actions whenever possible
- Better strategies for node selection
 - e.g., consider g-values to avoid "shortcuts"
- Refinement strategies
 - e.g., start with a diagram with width equals to 1 and split combined nodes

Thank you!

Example: The Independent Set Problem (again)

Lower Bounds on Different Domains

Domain	h^+	$\omega = \infty$	$\omega={\rm 64}$	$\omega = 128$	$\omega = 256$	$\omega = 512$	$\omega = 1024$
airport (7)	114	114	98	104	109	113	114
blocks (1)	6	6	3	4	4	5	6
driverlog (1)	6	6	6	6	6	6	6
ged-opt14-strips (3)	3	3	3	3	3	3	3
logistics00 (7)	106	106	74	80	97	106	106
miconic (12)	66	66	56	57	59	62	66
movie (8)	56	56	20	26	40	56	56
parcprinter-08-strips (3)	38	38	27	32	35	38	37
pegsol-08-strips (2)	8	8	7	7	8	8	8
psr-small (49)	155	155	155	155	155	155	155
rovers (4)	33	33	19	24	26	32	33
sokoban-opt08-strips (3)	20	20	17	19	20	20	20
sokoban-opt11-strips (2)	11	11	8	10	11	11	11
storage (6)	27	27	21	23	24	26	27
tidybot-opt11-strips (1)	4	4	4	4	4	4	4
tpp (4)	34	34	32	34	34	34	34
transport-opt08-strips (1)	5	5	3	3	3	5	5
visitall-opt11-strips (4)	17	17	13	17	17	17	17
zenotravel (2)	5	5	3	3	4	5	5
Sum (120)	714	714	569	611	659	706	713

