- RRRRER B f PR daelelelaladl o oo
- M. o R TR TR T T

9
R

L : |
T

R X g e ot

Expressive Plaming by Combining & |

Elad Denenberg

ING'S
College
LONDON

Pickup B

T

Put BT Put BC

\ 4 \
Pickup B P|ckup C Plckupp:éf:klup EF)>|ckup C P'Ckui A Pickup C i

Classical Planning Gives Us:
. Propositional Relaxation Heuristics: RPG, Causal Graph;
Search Guidance: Helpful Actions/Preferred Operators.

Search Techniques, Enforced Hill-Climbing, Multi Open List Search,
Memoisation;

Running Example - Public Transport

* Drivers have working hours;

* Bus routes have fixed durations and start and end
locations.

e Goals are that each bus route is done.

* The routes have timetables that they must follow.

Temporal Planning: Public Transport

duration >= 2 , duration <= 4

Available D1
Work D1 AtD1 A
Working D1 Working D1
~Available D1 K g
duration = 2 .
AtD1A Routel D1 B1 AtD1 B Rgld{g.gOSl:B:gz
At Bl A . At B2 B
Working D1 Working D1 AtD1A
-At D1 A At D1B -At D1 A AtB2 A
-AtB1A AtB1B -At B1 A Done Route3

Done Routel

Conditions and Effects at the start and at the end:
Invariant/overall conditions:

Durations constraints:
(= ?duration 4)
(and (>= ?duration 2) (<= ?duration 4))

"Planning with Problems Requiring Temporal Coordination.” A. 1. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction.” A. 1. Coles, M. Fox, K. Halsey, D. Long, and A.

J. Smith. Artificial Intelligence. 173 (1) (2009).

Temporal Planning: Public Transport

duration >= 2 , duration <= 4

Available D1
Work D1
Working D1 i
~Available D1 ~Working D1
jon =2 :
At D1 A moutalan =2 At D1 B duration = 3
R1 R1 Route3 D1 B2 >
At Bl A - " - At 8283 | 3
Working D1 ™ Working D1 AtD1A
~At D1 A At D1B -At D1 A At B2 A
~AtB1 A AtB1B -AtB1 A Done Route3

Done Routel

Three Challenges:

. Make sure ends can’t be applied unless starts have.
. Overall Conditions.
. Duration constraints.

"Planning with Problems Requiring Temporal Coordination.” A. 1. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction.” A. 1. Coles, M. Fox, K. Halsey, D. Long, and A.

J. Smith. Artificial Intelligence. 173 (1) (2009).

Temporal Planning: Public Transport

4
\W
) -
-€
3
~—>

Constraints:
W, -W_>=2
W, -W_<=4

Ri _>= W_+E¢
Ri, -R1_ =2
R3,_>= R1_+¢€
R3, -R3. =3
W,>= R3, +¢&

"Planning with Problems Requiring Temporal Coordination.” A. 1. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction.” A. 1. Coles, M. Fox, K. Halsey, D. Long, and A.
J. Smith. Artificial Intelligence. 173 (1) 2009.

Gontinuous Linear Ghange

- Numeric quantities so far we have seen change instantaneously:
* €.2. (at end (decrease (battery) 1))

* Or (at end (decrease (battery) (+ (*3 (?duration)) (*0.5 (temperature))))

e V=W.V+C

 Inreality numeric values often change continuously, rather than
discretely.

* While the bus is running £24=™Y=-40

* €.8. (increase (battery) (*#t -40))

« Today we will deal with linear change only.

Gontinuous Linear Change: Colin

At D1 A duration =2
At B1 A Routel D1 B1

Battery >= 30
1

R1_I

Working D1 I
Battery >= 10
-At D1 A dBattery/dt -=40(increase (battery) (*#t -40)) At D1B
-At B1 A AtBl1 B
: B Done Routel
OnRoute B1 duration >=0.25 ~OnRoute B1
> E1 Run Engine B1 1 _€
— Lk On Route B1 -
Battery <= 100 .
-AtD1A
~AtB1 A dBattery/dt +=60 EngineOff B1

-EngineOff B1 dCost/dt +=1
Cost +=10

Gontinuous Linear Change: Colin

At D1 A duration =2 Battery >= 30
AtBl1A Routel D1 Bl - 1
1
Working D1 I—I
Battery >= 10
-At D1 A dBattery/dt -=40(increase (battery) (*#t -40)) At D1B
-AtB1 A AtB1 B

Done Routel

OnRoute B1 duration >=0.25 Done Routel
-€ E1 Run Engine B1 - . nRoute
= On Route B1 —
Battery <= 100 _
-AtD1 A
-At B1 A dBattery/dt +=60 EngineOff B1
-EngineOff B1 dCost/dt +=1
Cost +=10
Temporal
Constraints:
R1_| - RI— =92

E1,_>= W_+¢
E1, -E1_ >=0.25
Ri1,_>= E1_ +¢€

Gontinuous Linear Change: Colin

AtD1A
AtB1A

-At D1 A
-At B1 A

OnRoute B1

duration =2
Routel D1 B1

Working D1
Battery >= 10

dBattery/dt -=40(increase (battery) (*#t -40))

duration >=0.25

-€ = Run Engine B1
— L—F On Route B1
-At D1 A Battery <= 190
At B1 A dBattery/dt +=60
-EngineOff B1 dCost/dt +=1
: . Cost += 10
Numeric Constraints:
R1_ E1,
Bryr =90 Bgy, =B'rs +(E1,-R1,)*-40| Be1=B'ey +(E1,-E1,)*20
Be, - >=10 By, >= 10
B'r1+=Brir Bei, <= 100
B’c,.=B
B,Rlp— >=10 Elr Elr
B'e14>=10
B'g;, <= 100

E1l,

Battery >= 30

R1_|

At D1B

-€

E1_I

EngineOff B1

Br14=B'e1,+(R1,-E1,)*-40
Br14>=10
B'e1y =By

B’E1—| >= 10

"Temporal Planning in Domains with Linear Processes." A. J. Coles, A. I. Coles, M. Fox, and D. Long. IJCAI (2009).
"COLIN: Planning with Continuous Linear Numeric Change." A. J. Coles, A. I. Coles, M. Fox and D. Long. JAIR (44) (2013)

AtBl1B

Done Routel
-OnRoute B1

R1,

B'e14= Beig

Writing The LP

 For each (snap) action, A, in the (partial) plan create the following LP
variables for each numeric variable in the problem:
* v;: the value of that variable immediately before A, is executed;
 Vv;: the value v immediately after A, is executed.
 Ov;: the rate of change active on v after A, is executed.

 Create a single LP variable t, to represent the time at which A; will be
executed.

Initial values:
* v, = initial state value of v;

Temporal Constraints:

e t>=t_ +¢

* t,—t; <= max_dur A (where t; is the end of the action starting at t;)
* t,—t;>=min_dur A (where t; is the end of the action starting at t;)

Continuous Change
* Vi = Vit 0vi(ty, - t)
Discrete Change:

* V.=V.+W.Vy
¢ e.g.IV,i=Vi+2ui-3Wi

 Preconditions: constraints over v;:
s W.v; {>=,=<=}c;
* e.g. 2wl -3ul <= 4;
 Invariants of A, must be checked before and after every step between the
start (i) and end (j) of A.
c w.V; {>=,=<=}c;
* W.V;, 1>=,=,<=}C;
* W.V,, {>=,=<=}¢;

* wW.V; {>=,=,<=}¢;

 This only works for linear change

 Defining an objective function will ensure cost optimality for the given
state only

 Action applicability:
« To check if the next action is applicable we need the bounds on the
current variables

 Define t,, and v, , for the next action, use LP to maximise and
minimise v, .,

Move Train BED SAC ¢ Move Train SAC LON
-€
10 5
&‘Bl Bus Route 1 SAC - I Bus Route 2 CITY
40
TD
BED % TAgac
10 -40
BDpgp 1BASAC
-
-10

"Forward-Chaining Partial-Order Planning." A. J. Coles, A. I. Coles, M. Fox, and D. Long. ICAPS 2010
"Have I Been Here Before? State Memoisation in Temporal Planning" A. J. Coles and A. I. Coles. ICAPS 2016.

Optimising Preferences: OPTIC and LPRPG-P

20

= |
— .

T‘A‘LON

TD SAC

* The train and the bus are at the station simultaneously: (sometime (and
(at train SAC) (at bus SAC)))

« The bus arrives in the city at gam or earlier: (within 35 (at bus CITY)))

" Searching for Good Solutions in Goal-Dense Search Spaces.” A. J. Coles and A. I. Coles. ICAPS (2013)
"Temporal Planning with Preferences and Time-Dependent Continuous Costs." J. Benton, A. J. Coles and A. I. Coles. ICAPS (2012)
"LPRPG-P: Relaxed Plan Heuristics for Planning with Preferences.“ A. J. Coles and A. I. Coles. ICAPS (2011)

 Train arrives before bus departs:
* BDg,c - TAgyc >= 0.01

 Bus arrives before train departs:
* TDg,c — BAg,c >= 0.01

* Bus arrives at CTY by 9am (time 35):

* BAcy <=35
e But these are not hard constraints

» Use Big M constraints

* We need:
- A 0/1integer variable per preference p, p,
« Avery large constant M.
 Train arrives before bus departs:
* BDgyc - TAgc + Mp, >= 0.01
 Bus arrives before train departs:
* TDg,c — BAg,c + Mp, >= 0.01
* Bus arrives at CTY by 9am (time 35):
* BA¢ry - Mp, <=35
 In the objective function:
* Minimise: whatever + 5 p, + 2 p,

CRIKEY = FF + STN;

Colin = CRIKEY s/STN/LP/;

POPF = COLIN + Fewer ordering constraints;
OPTIC = POPF + Preferences.

» Heuristic computation is notoriously expensive:
« An analysis showed that FF spends ~80% of its time evaluating the
heuristic.
 COLIN:
« Empirically using an STP scheduler scheduling accounts for on
average less than 5% of state evaluation time.
« For CLP and CPLEX (LP solvers) the figures are 13% and 18%
respectively.
« So better than calculating the heuristic.

« OPTIC

CPLEX

M addRow

[~MILPSolverCPX/CLP
M Solve

M Other

[Z1 Not Used

Figure 20: Time spent in various activities by each of the solvers, CPLEX and CLP, viewed as a pro-
portion of the total time spent by CPLEX. The slice labelled ‘~MILPSolverCPX/CLP”
is time spent in the destructor for the MILP solver in CPLEX or CLP: this is a house-
keeping operation in the implementations (which are both written in C++).

