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Classical Planning as Forward Search

Classical Planning Gives Us:

● Propositional Relaxation Heuristics: RPG, Causal Graph;

● Search Guidance: Helpful Actions/Preferred Operators.

● Search Techniques, Enforced Hill-Climbing, Multi Open List Search, 

Memoisation;

Pickup B

TTA

THA

TTA

Pickup B

TTH

TTB

THT

...

HTT

TAA

Pickup C

Put CTPut CB Put CA

TAATTT

Put BCPut BT

TTA

Pickup A Pickup C
Pickup B Pickup C

THA

TTHTHA

...

Pickup B Pickup C

TTH HTB

...

Pickup A Pickup C

TTH

Pickup B

TTHHTT

Pickup A Pickup C

TTT

THT

... ... ... ... ... ... ... ... ...

TTH



Running Example – Public Transport

• Drivers have working hours;

• Bus routes have fixed durations and start and end 

locations.

• Goals are that each bus route is done.

• The routes have timetables that they must follow.



Temporal Planning: Public Transport
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Conditions and Effects at the start and at the end;

Invariant/overall conditions;

Durations constraints:

(= ?duration 4)

(and (>= ?duration 2) (<= ?duration 4))

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith.  AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction." A. I. Coles, M. Fox, K. Halsey, D. Long, and A. 
J. Smith. Artificial Intelligence. 173 (1) (2009).



Temporal Planning: Public Transport

Three Challenges:

● Make sure ends can’t be applied unless starts have.

● Overall Conditions.

● Duration constraints.
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Temporal Planning: Public Transport
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"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith.  AAAI 2008.
"Managing concurrency in temporal planning using planner-scheduler interaction." A. I. Coles, M. Fox, K. Halsey, D. Long, and A. 
J. Smith. Artificial Intelligence. 173 (1) 2009.

Constraints:

W⊣ - W⊢ >= 2
W⊣ - W⊢ <= 4
R1 ⊢ >=  W⊢+ ε
R1⊣ - R1⊢ = 2
R3 ⊢ >=  R1⊢ + ε
R3⊣ - R3⊢ = 3
W⊣ >=  R3 ⊣ + ε



Continuous Linear Change

• Numeric quantities so far we have seen change instantaneously:

• e.g.  (at end (decrease (battery) 1))

• Or (at end (decrease (battery) (+ (*3 (?duration)) (*0.5 (temperature))))

• V’ = W . V + C

• In reality numeric values often change continuously, rather than 

discretely.

• While the bus is running 𝑑 𝑏𝑎𝑡𝑡𝑒𝑟𝑦
𝑑𝑡

=-40

• e.g.  (increase (battery) (*#t -40))

• Today we will deal with linear change  only.



Continuous Linear Change: Colin
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Continuous Linear Change: Colin
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Temporal 
Constraints:

R1⊣ - R⊢ = 2
E1 ⊢ >=  W⊢+ ε
E1⊣ - E1⊢ >= 0.25
R1 ⊢ >=  E1⊢+ ε



Continuous Linear Change: Colin
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Numeric Constraints:

BR1⊢ = 50

B’R1⊢=BR1⊢

BE1⊢=B’R1⊢+(E1⊢-R1⊢)*-40
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"Temporal Planning in Domains with Linear Processes." A. J. Coles, A. I. Coles, M. Fox, and D. Long. IJCAI (2009).
"COLIN: Planning with Continuous Linear Numeric Change." A. J. Coles, A. I. Coles, M. Fox and D. Long. JAIR (44) (2013)



Writing The LP

• For each (snap) action, Ai, in the (partial) plan create the following LP 

variables for each numeric variable in the problem:

• vi: the value of that variable immediately before Ai is executed;

• v’i: the value v immediately after Ai is executed.

• δvi: the rate of change active on v after Ai is executed.

• Create a single LP variable ti to represent the time at which Ai will be 

executed.



Writing the LP - Constraints

• Initial values:

• v0 = initial state value of v;

• Temporal Constraints:

• ti >= ti-1 + ε

• tj – ti <= max_dur A (where tj is the end of the action starting at ti)

• tj – ti >= min_dur A (where tj is the end of the action starting at ti)

• Continuous Change

• vi+1 = v’i + δvi (ti+1 – ti)

• Discrete Change:

• v’i = vi + w . vi;

• e.g. : v’i = vi + 2 ui - 3wi



Writing the LP - Constraints

• Preconditions: constraints over vi:

• w . vi {>=,=,<=} c;

• e.g. 2wi -3ui <= 4;

• Invariants of A, must be checked before and after every step between the 

start (i) and end (j) of A.

• w . v’i {>=,=,<=} c;

• w . vi+1 {>=,=,<=} c;

• w . v’i+1 {>=,=,<=} c;

• …

• w . vj {>=,=,<=} c;



Writing the LP - Notes

• This only works for linear change

• Defining an objective function will ensure cost optimality for the given 

state only

• Action applicability:

• To check if the next action is applicable we need the bounds on the 

current variables

• Define tnow and vnow , for the next action, use LP to maximise and 

minimise vnow



"Forward-Chaining Partial-Order Planning." A. J. Coles, A. I. Coles, M. Fox, and D. Long. ICAPS 2010
"Have I Been Here Before? State Memoisation in Temporal Planning" A. J. Coles and A. I. Coles. ICAPS 2016.
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Partial Order Planning Forwards: POPF



" Searching for Good Solutions in Goal-Dense Search Spaces." A. J. Coles and A. I. Coles. ICAPS (2013)
"Temporal Planning with Preferences and Time-Dependent Continuous Costs." J. Benton, A. J. Coles and A. I. Coles. ICAPS (2012)
"LPRPG-P: Relaxed Plan Heuristics for Planning with Preferences.“ A. J. Coles and A. I. Coles. ICAPS (2011) 
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Optimising Preferences: OPTIC and LPRPG-P

• The train and the bus are at the station simultaneously: (sometime (and 

(at train SAC) (at bus SAC)))

• The bus arrives in the city at 9am or earlier: (within 35 (at bus CITY)))



Preferences

• Train arrives before bus departs:

• BDSAC - TASAC >= 0.01

• Bus arrives before train departs:

• TDSAC – BASAC >= 0.01

• Bus arrives at CTY by 9am (time 35):

• BACTY <= 35

• But these are not hard constraints

• Use Big M constraints



Big M Constraints

• We need:

• A 0/1 integer variable per preference p1 , p2

• A very large constant M.

• Train arrives before bus departs:

• BDSAC - TASAC + Mp1 >= 0.01

• Bus arrives before train departs:

• TDSAC – BASAC + Mp1 >= 0.01

• Bus arrives at CTY by 9am (time 35):

• BACTY - Mp2 <= 35

• In the objective function:

• Minimise: whatever + 5 p1 + 2 p2



Relationship Between Planners

• CRIKEY = FF + STN;

• Colin = CRIKEY s/STN/LP/;

• POPF = COLIN + Fewer ordering constraints;

• OPTIC = POPF + Preferences.



Planners Performance

• Heuristic computation is notoriously expensive:

• An analysis showed that FF spends ~80% of its time evaluating the 

heuristic.

• COLIN:

• Empirically using an STP scheduler scheduling accounts for on 

average less than 5% of state evaluation time. 

• For CLP and CPLEX (LP solvers) the figures are 13% and 18% 

respectively.  

• So better than calculating the heuristic.



Planners Performance Cont.

• OPTIC



Questions ?


