

Expressive Planning by Combining Forward Search and Mixed-Integer Programming Elad Denenberg

Classical Planning as Forward Search

Classical Planning Gives Us:

- Propositional Relaxation Heuristics: RPG, Causal Graph;
- Search Guidance: Helpful Actions/Preferred Operators.
- Search Techniques, Enforced Hill-Climbing, Multi Open List Search, Memoisation;

Running Example – Public Transport

- Drivers have working hours;
- Bus routes have fixed durations and start and end locations.
- Goals are that each bus route is done.
- The routes have timetables that they must follow.

Temporal Planning: Public Transport

Conditions and Effects at the start and at the end;

Invariant/overall conditions;

Durations constraints:

(= ?duration 4)
(and (>= ?duration 2) (<= ?duration 4))</pre>

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008. *"Managing concurrency in temporal planning using planner-scheduler interaction."* A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial Intelligence. 173 (1) (2009).

Temporal Planning: Public Transport

Three Challenges:

- Make sure ends can't be applied unless starts have.
- Overall Conditions.
- Duration constraints.

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008. *"Managing concurrency in temporal planning using planner-scheduler interaction."* A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial Intelligence. 173 (1) (2009).

Temporal Planning: Public Transport

Constraints:

 $W_{\dashv} - W_{\vdash} \ge 2$ $W_{\dashv} - W_{\vdash} \le 4$ $R1_{\vdash} \ge W_{\vdash} + \varepsilon$ $R1_{\dashv} - R1_{\vdash} = 2$ $R3_{\vdash} \ge R1_{\vdash} + \varepsilon$ $R3_{\dashv} - R3_{\vdash} = 3$ $W_{\dashv} \ge R3_{\dashv} + \varepsilon$

"Planning with Problems Requiring Temporal Coordination." A. I. Coles, M. Fox, D. Long, and A. J. Smith. AAAI 2008. *"Managing concurrency in temporal planning using planner-scheduler interaction."* A. I. Coles, M. Fox, K. Halsey, D. Long, and A. J. Smith. Artificial Intelligence. 173 (1) 2009.

Continuous Linear Change

- Numeric quantities so far we have seen change instantaneously:
 - **e.g.** (at end (decrease (battery) 1))
 - Or (at end (decrease (battery) (+ (*3 (?duration)) (*0.5 (temperature))))
 - $\mathbf{V'} = \mathbf{W} \cdot \mathbf{V} + \mathbf{C}$
- In reality numeric values often change continuously, rather than discretely.
 - While the bus is running $\frac{d \ battery}{dt}$ =-40
 - **e.g.** (increase (battery) (*#t -40))
 - Today we will deal with linear change only.

Continuous Linear Change: Colin

Continuous Linear Change: Colin

Continuous Linear Change: Colin

"Temporal Planning in Domains with Linear Processes." A. J. Coles, A. I. Coles, M. Fox, and D. Long. IJCAI (2009). "COLIN: Planning with Continuous Linear Numeric Change." A. J. Coles, A. I. Coles, M. Fox and D. Long. JAIR (44) (2013)

Writing The LP

- For each (snap) action, A_i, in the (partial) plan create the following LP variables for each numeric variable in the problem:
 - v_i: the value of that variable immediately before A_i is executed;
 - v'_i : the value v immediately after A_i is executed.
 - δv_i : the rate of change active on v after A_i is executed.
- Create a single LP variable t_i to represent the time at which A_i will be executed.

Writing the LP - Constraints

- Initial values:
 - v_o = initial state value of v;
- Temporal Constraints:
 - $t_i \ge t_{i-1} + \varepsilon$
 - $t_j t_i \le \max_{j \in I} A$ (where t_j is the end of the action starting at t_i)
 - $t_j t_i >= \min_{i} dur A$ (where t_j is the end of the action starting at t_i)
- Continuous Change
 - $v_{i+1} = v'_i + \delta v_i (t_{i+1} t_i)$
- Discrete Change:
 - $v'_i = v_i + w \cdot v_i;$
 - e.g.: $v'_i = v_i + 2 u_i 3w_i$

Writing the LP - Constraints

- Preconditions: constraints over v_i:
 - $\mathbf{w} \cdot \mathbf{v}_i \{ >=,=,<= \} c;$
 - e.g. 2wi -3ui <= 4;
- Invariants of A, must be checked before and after every step between the start (i) and end (j) of A.
 - w. v_i^{\prime} {>=,=,<=} c;
 - w. \mathbf{v}_{i+1} {>=,=,<=} c;
 - w. v'_{i+1} {>=,=,<=} c;
 - • •
 - w.v_j {>=,=,<=} c;

Writing the LP - Notes

- This only works for linear change
- Defining an objective function will ensure cost optimality for the given state only
- Action applicability:
 - To check if the next action is applicable we need the bounds on the current variables
 - Define t_{now} and v_{now} , for the next action, use LP to maximise and minimise v_{now}

Partial Order Planning Forwards: POPF

"Forward-Chaining Partial-Order Planning." A. J. Coles, A. I. Coles, M. Fox, and D. Long. ICAPS 2010 "Have I Been Here Before? State Memoisation in Temporal Planning" A. J. Coles and A. I. Coles. ICAPS 2016.

Optimising Preferences: OPTIC and LPRPG-P

- The train and the bus are at the station simultaneously: (sometime (and (at train SAC) (at bus SAC)))
- The bus arrives in the city at 9am or earlier: (within 35 (at bus CITY)))

[&]quot; Searching for Good Solutions in Goal-Dense Search Spaces." A. J. Coles and A. I. Coles. ICAPS (2013) "Temporal Planning with Preferences and Time-Dependent Continuous Costs." J. Benton, A. J. Coles and A. I. Coles. ICAPS (2012) "LPRPG-P: Relaxed Plan Heuristics for Planning with Preferences." A. J. Coles and A. I. Coles. ICAPS (2011)

Preferences

- Train arrives before bus departs:
 - BD_{SAC} $TA_{SAC} \ge 0.01$
- Bus arrives before train departs:
 - $TD_{SAC} BA_{SAC} \ge 0.01$
- Bus arrives at CTY by 9am (time 35):
 - $BA_{CTY} \le 35$
- But these are not hard constraints
- Use Big M constraints

Big M Constraints

- We need:
 - A 0/1 integer variable per preference p_1, p_2
 - A very large constant M.
- Train arrives before bus departs:
 - $BD_{SAC} TA_{SAC} + Mp_1 >= 0.01$
- Bus arrives before train departs:
 - $TD_{SAC} BA_{SAC} + Mp_1 >= 0.01$
- Bus arrives at CTY by 9am (time 35):
 - $BA_{CTY} Mp_2 \le 35$
- In the objective function:
 - Minimise: whatever $+ 5 p_1 + 2 p_2$

Relationship Between Planners

- CRIKEY = FF + STN;
- Colin = CRIKEY s/STN/LP/;
- POPF = COLIN + Fewer ordering constraints;
- OPTIC = POPF + Preferences.

Planners Performance

- Heuristic computation is notoriously expensive:
 - An analysis showed that FF spends ~80% of its time evaluating the heuristic.
- COLIN:
 - Empirically using an STP scheduler scheduling accounts for on average less than 5% of state evaluation time.
 - For CLP and CPLEX (LP solvers) the figures are 13% and 18% respectively.
 - So better than calculating the heuristic.

Planners Performance Cont.

• OPTIC

Figure 20: Time spent in various activities by each of the solvers, CPLEX and CLP, viewed as a proportion of the total time spent by CPLEX. The slice labelled '~MILPSolverCPX/CLP' is time spent in the destructor for the MILP solver in CPLEX or CLP: this is a housekeeping operation in the implementations (which are both written in C++).

Questions P