

CP'18 Workshop on Constraints & AI Planning

Planning with State and Trajectory Constraints

Planning with constraints

$$s_0 \xrightarrow{} act 1 \xrightarrow{} s_1 \xrightarrow{} s_n \models G$$

- * Action pre- and post-conditions impose a fundamental constraint on consecutive states.
- * What if we need additional constraints
 - > on some or all states traversed by the plan; or
 - > on the state sequence?

- * Part 1: Planning with state constraints.
 - > (Benders'-like) Decomposition: state constraint satisfiability decided by a "black box" solver, planning by heuristic state-space search.
 - > Constraint-aware heuristics.
- * Part 2: Planning with trajectory constraints.
 - > (LTL-like) plan constraints.
 - > Plan constraint-specific propagation.

Part 1

State constraints

- Constraints on the valuations of state variables that must be satisfied
 - > in every state;
 - > in the goal state; or
 - > as part of an action's precondition.

State constraints

- * Partition state variables into:
 - > primary: subject to action effects, inertia.
 - > secondary: determined by constraints only.
- * Secondary variables may be of any type.
- * Primary/secondary variables are linked by (switched) constraints.

Example: Power Network Re-Configuration

- Discrete actions (e.g., open/close switch).
- * Power flow is a (non-linear) function of the global state.
- * System stabilises after each discrete action.
- * Not all states are valid.

- * Primary: proposition y_{ij} for line (i, j) on/off.
- * Secondary: generation (controllable), voltage & power flow, bus fed status.
- * Constraints:
 - > Power flow equations
 - > Generation and line limits
 - > Goal: target buses fed
- * Switched constraints:

$$\begin{array}{l} > \ y_{ij} \rightarrow \rho_{ij} = \bar{g}_{ij}(v_{Ri}^2 + v_{li}^2) - \bar{g}_{ij}(v_{Ri}v_{Rj} + v_{li}v_{lj}) \\ - \bar{b}_{ij}(v_{li}v_{Rj} - v_{Ri}v_{lj}) \end{array}$$

$$\begin{array}{l} > \; y_{ij}
ightarrow p_{ji} = \ldots \ > \;
eg y_{ij}
ightarrow p_{ij} = q_{ij} = q_{ji} = q_{ji} = 0 \end{array}$$

Example: Vehicle routing

- Trucks carry goods from depots to customers.
- * Capacity constraints.
- Possibility of transshipments.
- * Time constraints are not modelled.

- * Primary: $at_v \in Loc$, $visit_{v,l} \in \{T, F\}$, $xs_{v,v'} \in \{T, F\}$.
 - > Move v to I sets visit_{v,I} := T
 - > Move v to X first sets $xs_{v',v} := T$ if $visit_{v',X}$, and $xs_{v,v'} := T$ if $at_{v'} = X$
- * Goal constraints:

$$\begin{array}{l} > \sum_{v} x_{v,s,l} = \bar{q}_{s,i}, \ s \in \text{Dep}, \ l \in \text{Cust} \\ > \sum_{s} x_{v,s,l} = \sum_{v'} y_{v',v}, \ \text{dep}(v) \neq s, \ \text{dep}(v') = s \\ > \sum_{s,l} x_{v,s,l} + \sum_{v'} y_{v,v'} \leq \bar{c}_v \\ > \neg \text{visit}_{v,l} \rightarrow x_{v,s,l} = 0 \\ > \neg xs_{v,v'} \rightarrow y_{v,v'} = 0 \\ > \ \text{at}_v = dep(v). \end{array}$$

Example: Axioms

- * PDDL axioms are logical state constraints, connecting primary and secondary (derived) finite-domain variables.
- * Domain axioms are a stratified ASP theory.

 $\begin{array}{l} \mathsf{reach}_{\mathit{I}} \leftarrow \mathsf{at}_{\mathit{I}} \\ \mathsf{reach}_{\mathit{I}} \leftarrow \mathsf{reach}_{\mathit{I'}} \land \mathsf{adj}_{\mathit{I'},\mathit{I}} \land \mathsf{not} \ \mathsf{blocked}_{\mathit{I}} \\ \mathsf{blocked}_{\mathit{I}} \leftarrow \mathsf{stone}_{\mathit{I}} \\ \mathsf{blocked}_{\mathit{I}} \leftarrow \mathsf{wall}_{\mathit{I}} \end{array}$

Search with state constraints

- * A* search over the primary state-space, but also solving a CSP (of some kind) for every state.
 * If it's "Bondors' like", where are the outs?
- * If it's "Benders'-like", where are the cuts?

Complexity

- * Observation (due to Peter Jonsson): (ground) classical planning remains in PSPACE even if deciding the validity of a transition (s, a, s') is PSPACE-hard.
- * Secondary variables are "existential"
 - > Satisfiability is a function of the primary state.
 - > Can be reduced to a plain STRIPS/SAS problem, with exponential blow-up.
- * Switched linear constraints can encode arbitrary formulas over the primary state blow-up is unavoidable (Nebel, 2000).

Sokoban (with and without axioms)

Vehicle routing (no trans-shipment, but two goods types)

Heuristics

- Classical planning heuristics applied to the primary state only are blind to implicit preconditions – even goals – imposed by state constraints.
- * How to make them constraint-aware?
- * Admissible planning heuristics are generally based on optimally solving a problem relaxation.
 - > Monotone ("delete-free") relaxation.
 - > Abstraction.

Constraints on relaxed states

- * Monotone relaxation:
 - > State variables have a set of values;
 - > action effects add values to this set.
- * Abstraction
 - > Projection onto a subset of state variables.
 - > Other variables are ignored; they can be assumed to have any value.
- * A relaxed (abstract) state s^+ corresponds to a *set* of states; constraints are satisfiable in s^+ iff satisfiable in any state in this set.

Project on $\{y_1\}$ $y_1 = F$ $y_2 \in \{T, F\}$ $y_2 \in \{T, F\}$

Project on $\{y_2\}$ $y_1 \in \{T, F\}$ $y_2 = F$ $y_2 = T$

Weaker (tractable) relaxations

- Deciding constraint satisfiability in a relaxed state s⁺ requires solving a CSP over both primary (discrete) and secondary variables.
- Relaxation is sound (admissible) as long as s⁺ is declared invalid/non-goal only if constraints are unsatisfiable in all corresponding states.
 - > Apply only (tractable) constraint propagation (Francés & Geffner).
 - Discard all switched constraints whose triggering condition is not necessarily true in the relaxed state.

Results

Node (heuristic) evaluations

PSR

Vehicle routing

Runtime

PSR

Vehicle routing

No-good learning

- * Type 0
 - When encountering an invalid state s, extract a (small) condition \u03c6 on s primary that is sufficient to make C unsatisifable.
 - > Test no-goods in future states to avoid calling constraint solver.
- * Type 1
 - > Regress \u03c6 through the action that led to s, and test before generating successor states.
- * Note: Did not consider learning *goal* conditions.

PSR

Hydraulic Blocksworld

Part 2

Trajectory constraints

- * Constraints on the sequence of states visited by the plan.
- * For example, "*p* must hold sometime before *q*":

* Plan constraints (introduced in PDDL3) are a limited subset of Linear Temporal Logic (LTL).

Plan constraints (PDDL3 & extra)

$F\alpha$	α true in final state
$\mathbf{A}\alpha$	α true in all states
$\mathbf{E}\alpha$	α true in some states
$\alpha \operatorname{SB} \beta$	α true in some state strictly before the first state
	where β true, or β never true
$\alpha \operatorname{SA} \beta$	α true in some state after last state where β true,
	or $\alpha \wedge \beta$ in that state
$AMO\alpha$	α true in at most one contiguous subseq of states

$N\alpha$	$\neg E \alpha$
$\alpha NA \beta$	α false in every state after first state where β true

where α and β are *state* formulas.

Example: Story variations

- * Encode the events of a story (*The Illiad*) as actions.
- * The original story is one possible plan.
 - > C_T : A set of trajectory constraints that are true of this plan.
 - *C_F*: A set of trajectory constraints that are false of this plan.
- * Sample $S \subset C_T$ and $D \subset C_F$, try to find a plan that satisfies $S \cup D$. Repeat many times.
- * How to (quickly) filter out unsatisfiable (w.r.t. planning problem) constraint sets?

(achilles-and-agamemnon-quarrel) (zeus-tricks-agamemnon-into-attacking-troy) (issues-a-challenge paris) (challenge-taken-up menelaus paris) (single-combat-ends-divine-intervention paris menelaus) (athena-tricks-tojans-into-breaking-peace) (trojans-driven-back-to-walls-of-troy) (hector-talks-with-his-wife)

(battle-begins-at-dawn) (achaeans-driven-back-to-plain) (achaeans-driven-back-to-wall) (battle-ends-at-nightfall)

(priam-holds-funeral-for-hector)

In C_T : E (wounded hector) E (dead sarpedon) (trojans-losing) SB (night) (fighting hector) SB (night) (night) SB (achaeans-losing) (not (wounded hector)) SA (wounded hector)

In C_F : A (not (dead sarpedon)) (achaeans-losing) SB (fighting hector) (night) SB (trojans-losing) AMO (battle-at-walls-of-troy)

Example: Bounding preferences

- Given a set of of weighted soft trajectory constraints, what is the max weight subset that is simultaneously satisfiable by any plan?
- * To compute an upper bound,
 - > find unsatisfiable subsets of constraints; and
 - > solve a weighted hitting set problem.
- * How to (quickly) determine if constraint subsets are unsatisfiable (w.r.t. planning problem)?

Plan constraint propagation

- * Rules for inferring new constraints or a contradiction from sets of constraints.
- * Rules form an algorithm that is (almost) polynomial in the size of the constraint set.
- * Satisfiability w.r.t. planning problem: Extract from the problem plan constraints that are necessarily true of every executable action sequence, and test in conjunction.
- * Resulting test is *fast* and *sound*, but not complete.

Extraction

- * Constraint extraction from the problem can use a variety of relaxations (e.g., delete-free).
 - > E.g., p SB q if p is a (causal) landmark of q.
- * Conditional constraints:
 - > N α and pre(a) $\rightarrow \alpha$ or eff(a) $\rightarrow \alpha$ means a can not be part of any plan (Da, "disallow a").
 - > Disallowing more actions can make more constraints hold: e.g., disallowing {a | p ∈ add(a)} - {a | q ∈ pre(a)} implies q SB p.

Propagation Algorithm

* **PROPAGATE**(C, X)

- > Input: Sets of trajectory constraints (C) and conditional constraints (X).
- > Returns: Contradiction, or extended set of constraints (optionally: proof).
- * Inferred constraints only over state formulas present in the input.
- * Separate procedure for checking contradiction with AMO constraints.

- **1.** Transitivity over SB and \rightarrow :
 - > $\alpha \operatorname{SB} \beta$ and $\beta \operatorname{SB} \gamma$ implies $\alpha \operatorname{SB} \gamma$.
 - > $\alpha \operatorname{SB} \beta$ and $\gamma \to \beta$ implies $\alpha \operatorname{SB} \gamma$.
 - > $\beta \rightarrow \alpha$ and $\beta \operatorname{SB} \gamma$ implies $\alpha \operatorname{SB} \gamma$.
- **2.** A α and mutex (α, β) implies N β .
- **3.** α SB β and β SB α implies N α .
- **4.** α SB β and N α implies N β .
- **5.** α SB β and β NA α implies N β .
- **6.** A α and del(a) negates α implies Da.
- 7. N α and pre(a) $\rightarrow \alpha$ or add(a) $\rightarrow \alpha$ implies Da.
- **8.** For $\langle \varphi, A \rangle \in X$, when Da for all $a \in A$ assert φ .

- * Rules 1–7 are iterated until fixpoint.
- **8.** EG, where G is the goal.
- **9.** α SB β and E β implies E α .
- **10.** $\alpha \rightarrow \beta$ and $\mathbf{E}\alpha$ implies $\mathbf{E}\beta$.
 - * Rules 9–10 are iterated until fixpoint.
- **11.** $E\alpha$ and $N\alpha$ is a contradiction.
- **12.** E α , E β , α NA β and β NA α is a contradiction.
- **13.** CHECKAMO(*C*, *D*).

- * AMO α implies plan can include:
 - > at most one action changing *α* from true to false (ActChF(*α*));
 - > at most one action changing α from false to true (ActChT(α)); none if α initially true.
- * Find a set of atoms R' such that $Ep \in C \ \forall p \in R'$ and no action adds more than one atom in R'.
- * Find a set $S = \{A_1, \ldots, A_n\}$ such that $\{a \notin D \mid p \in R', p \in \text{add}(a)\}$ is covered by $\bigcup_{A_i \in S} A_i$ and each $A_i = \text{ActChF}(\alpha)$ or $A_i = \text{ActChT}(\alpha)$) for some AMO $\alpha \in C$.
- * If |R'| > |S|, this is a contradiction.

Results: Runtime

* Alternative: Compiling constraints into planning problem and checking unsolvability with h^2 .

Results: Inconsistent sets

Results: Bounds

Conclusions

- * "Pinching one idea is plagiarism. Pinching two is research."
- * Combining solvers
 - > Interfaces: what is required of/by the "other"?
- * ...and combining ideas.