
CP’18 Workshop on Constraints & AI
Planning

Planning with State and
Trajectory Constraints



Planning with constraints

s0
act 1 s1

act 2
... act n sn |= G

* Action pre- and post-conditions impose a
fundamental constraint on consecutive states.

* What if we need additional constraints
> on some or all states traversed by the plan; or
> on the state sequence?



* Part 1: Planning with state constraints.
> (Benders’-like) Decomposition: state

constraint satisfiability decided by a “black
box” solver, planning by heuristic state-space
search.

> Constraint-aware heuristics.
* Part 2: Planning with trajectory constraints.
> (LTL-like) plan constraints.
> Plan constraint-specific propagation.



Part 1



State constraints

s0

C

act1
s1

C

act2 . . .
actn

sn

C?

* Constraints on the valuations of state variables
that must be satisfied
> in every state;
> in the goal state; or
> as part of an action’s precondition.



State constraints
s0

C

act1
s1

C

act2 . . .
actn

sn

C?

primary

secondary

* Partition state variables into:
> primary: subject to action effects, inertia.
> secondary: determined by constraints only.

* Secondary variables may be of any type.
* Primary/secondary variables are linked by

(switched) constraints.



Example: Power Network
Re-Configuration

* Discrete actions (e.g.,
open/close switch).

* Power flow is a (non-linear)
function of the global state.

* System stabilises after each
discrete action.

* Not all states are valid.

+362.0

+10.0

+41.3

+19.3

-7.6

-1.6

+5.8

+21.0

-47.8

+3.9

0.0

0.0

-29.5

-16.6

+0.8

+16.5

-3.5

-1.8

-6.1

-1.6 -13.5

-5.8

0.0

+24.0

-9.0

-5.8

-14.9

-5.0



* Primary: proposition yij for line (i , j) on/off.
* Secondary: generation (controllable), voltage &

power flow, bus fed status.
* Constraints:
> Power flow equations
> Generation and line limits
> Goal: target buses fed

* Switched constraints:
> yij → pij = ḡij(v2

Ri + v2
Ii )− ḡij(vRivRj + vIivIj)

−b̄ij(vIivRj − vRivIj)
> yij → pji = . . .
> ¬yij → pij = qij = pji = qji = 0



Example: Vehicle routing

* Trucks carry goods from
depots to customers.

* Capacity constraints.
* Possibility of trans-

shipments.
* Time constraints are not

modelled.
A B

X
1

2

3



* Primary: atv ∈ Loc, visitv ,l ∈ {T ,F},
xsv ,v ′ ∈ {T ,F}.
> Move v to l sets visitv ,l := T
> Move v to X first sets xsv ′,v := T if visitv ′,X ,

and xsv ,v ′ := T if atv ′ = X
* Goal constraints:
>

∑
v xv ,s,l = q̄s,i , s ∈ Dep, l ∈ Cust

>
∑

s xv ,s,l =
∑

v ′ yv ′,v , dep(v) 6= s, dep(v ′) = s
>

∑
s,l xv ,s,l +

∑
v ′ yv ,v ′ ≤ c̄v

> ¬visitv ,l → xv ,s,l = 0
> ¬xsv ,v ′ → yv ,v ′ = 0
> atv = dep(v).



Example: Axioms

* PDDL axioms are logical state constraints,
connecting primary and secondary (derived)
finite-domain variables.

* Domain axioms are a stratified ASP theory.

reachl ← atl
reachl ← reachl ′ ∧ adjl ′,l ∧ not blockedl
blockedl ← stonel
blockedl ← walll



Search with state constraints
s0 C?

√

C?
√

C?
√

a3

a1

C? ×

a2

C?
√

C ∧ C??
√

a2

a3

a2
a1

* A? search over the primary state-space, but also
solving a CSP (of some kind) for every state.

* If it’s “Benders’-like”, where are the cuts?



Complexity
* Observation (due to Peter Jonsson): (ground)

classical planning remains in PSPACE even if
deciding the validity of a transition (s,a, s′) is
PSPACE-hard.

* Secondary variables are “existential”
> Satisfiability is a function of the primary state.
> Can be reduced to a plain STRIPS/SAS

problem, with exponential blow-up.
* Switched linear constraints can encode arbitrary

formulas over the primary state – blow-up is
unavoidable (Nebel, 2000).



Sokoban (with and without axioms)

Node expansions

#
 o

f 
P

ro
b
le

m
s
 s

o
lv

e
d
 w

it
h
in

 X

0 100 10k 10M

5
1

0
1

5
2

0
2

5
3

0

Axioms, PDB

STRIPS, PDB

Axioms, blind

STRIPS, blind

Time (sec.)
0.1s 1s 1m 5m 30m

5
1

0
1

5
2

0
2

5
3

0

Axioms, PDB

STRIPS, PDB

Axioms, blind

STRIPS, blind



Vehicle routing (no trans-shipment, but two goods

types)

S
ta

te
s
 e

va
lu

a
te

d

2
5
 /
 1

2
 2

R
/2

A

1
8
 /
 0

4
 2

R
/2

A

2
5
 /
 1

2
 3

R
/2

A

1
8
 /
 0

4
 3

R
/2

A

2
5
 /
 1

2
 3

R
/3

A

1
8
 /
 0

4
 3

R
/3

A

2
5
 /
 1

2
 4

R
/3

A

1
8
 /
 0

4
 4

R
/3

A

2
5
 /
 1

2
 4

R
/4

A

1
8
 /
 0

4
 4

R
/4

A

0
7
 /
 1

0
 2

R
/2

A

0
7
 /
 1

0
 3

R
/2

A

0
7
 /
 1

0
 3

R
/3

A

0
7
 /
 1

0
 4

R
/3

A

0
7
 /
 1

0
 4

R
/4

A

2
5
 /
 0

4
 2

R
/2

A

2
0
 /
 0

4
 2

R
/2

A

2
0
 /
 0

4
 3

R
/2

A

2
0
 /
 0

4
 3

R
/3

A

2
0
 /
 0

4
 4

R
/3

A

2
0
 /
 0

4
 4

R
/4

A

1
0

1
0
0

1
k

1
0

k
1

0
0
k

1
M

1
0

M h+       (state constraints)

h^max (state constraints)

PDB    (state constraints)

lmcut   (classical)

h^max (classical)

PDB    (classical)

m&s    (classical)



Heuristics
* Classical planning heuristics applied to the

primary state only are blind to implicit
preconditions – even goals – imposed by state
constraints.

* How to make them constraint-aware?

* Admissible planning heuristics are generally
based on optimally solving a problem relaxation.

> Monotone (“delete-free”) relaxation.
> Abstraction.



Constraints on relaxed states
* Monotone relaxation:
> State variables have a set of values;
> action effects add values to this set.

* Abstraction
> Projection onto a subset of state variables.
> Other variables are ignored; they can be

assumed to have any value.
* A relaxed (abstract) state s+ corresponds to a

set of states; constraints are satisfiable in s+ iff
satisfiable in any state in this set.



Example
G

10

A
7

B
5

1 2

y1 → fG = fA
y2 → fA = fB

fG = 1
¬y1 → pGA = pAG = 0
¬y2 → pAB = pBA = 0

pGA + pBA = 7fA + pAG + pAB
pAB = 5fB + pBA
pGA ≤ 10

Goal: fA = 1



y1 = F

y2 = T

y1 = F

y2 = F

y1 = T

y2 = F

y1 = T

y2 = T

Project on {y1}

y1 = F

y2 ∈ {T ,F}
y1 = T

y2 ∈ {T ,F}

Project on {y2}

y1 ∈ {T ,F}
y2 = F

y1 ∈ {T ,F}
y2 = T



Weaker (tractable) relaxations
* Deciding constraint satisfiability in a relaxed

state s+ requires solving a CSP over both
primary (discrete) and secondary variables.

* Relaxation is sound (admissible) as long as s+

is declared invalid/non-goal only if constraints
are unsatisfiable in all corresponding states.
> Apply only (tractable) constraint propagation

(Francés & Geffner).
> Discard all switched constraints whose

triggering condition is not necessarily true in
the relaxed state.



Results
Node (heuristic) evaluations

PSR

0
1
0

2
0

3
0

Nodes evaluated

P
e
rc

e
n
t 
o
f 
(s

o
lv

a
b
le

) 
in

s
ta

n
c
e
s

1 100 1000 10000

h+/PPA*

PDB/PPA*

h^max/A*

Blind

Vehicle routing

0
5

1
0

1
5

2
0

2
5

3
0

Nodes evaluated

P
e
rc

e
n
t 
o
f 
(s

o
lv

a
b
le

) 
in

s
ta

n
c
e
s

10 100 1000 10000 100000

h+/PPA*

PDB/PPA*

h^max/A*

Blind



Runtime

PSR

0
1
0

2
0

3
0

Time (seconds)

P
e
rc

e
n
t 
o
f 
(s

o
lv

a
b
le

) 
in

s
ta

n
c
e
s

0.1 1 10 100 1000

h+/PPA*

PDB/PPA*

h^max/A*

Blind

MINLP

Vehicle routing

0
5

1
0

1
5

2
0

2
5

3
0

Time (seconds)

P
e
rc

e
n
t 
o
f 
(s

o
lv

a
b
le

) 
in

s
ta

n
c
e
s

0.1 1 10 100 1000

h+/PPA*

PDB/PPA*

h^max/A*

Blind

Symba−2



No-good learning
* Type 0
> When encountering an invalid state s, extract

a (small) condition φ on s primary that is
sufficient to make C unsatisifable.

> Test no-goods in future states to avoid calling
constraint solver.

* Type 1
> Regress φ through the action that led to s, and

test before generating successor states.
* Note: Did not consider learning goal conditions.



PSR

No learning (time in sec.)

n
o

−
g

o
o

d
 l
e

a
rn

in
g

 (
ti
m

e
 i
n

 s
e

c
.)

0.1 1 10 100 1000

0
.1

1
1

0
1

0
0

1
0

0
0

Type 0

Type 1

Hydraulic
Blocksworld

No learning (time in sec.)

n
o

−
g

o
o

d
 l
e

a
rn

in
g

 (
ti
m

e
 i
n

 s
e

c
.)

0.1 1 10 100

0
.1

1
1

0
1

0
0

1
0

0
0

Type 0

Type 1



Part 2



Trajectory constraints

* Constraints on the sequence of states visited by
the plan.

* For example, “p must hold sometime before q”:
¬p,¬q,
...

· · · p,¬q,
...

· · · ¬p,q,
...

√

¬p,¬q,
...

· · · ¬p,q,
...

×
* Plan constraints (introduced in PDDL3) are a

limited subset of Linear Temporal Logic (LTL).



Plan constraints (PDDL3 & extra)
Fα α true in final state
Aα α true in all states
Eα α true in some states
αSB β α true in some state strictly before the first state

where β true, or β never true
αSA β α true in some state after last state where β true,

or α ∧ β in that state
AMOα α true in at most one contiguous subseq of states

Nα ¬Eα
αNA β α false in every state after first state where β true

where α and β are state formulas.



Example: Story variations
* Encode the events of a story (The Illiad) as

actions.
* The original story is one possible plan.
> CT : A set of trajectory constraints that are true

of this plan.
> CF : A set of trajectory constraints that are

false of this plan.
* Sample S ⊂ CT and D ⊂ CF , try to find a plan

that satisfies S ∪ D. Repeat many times.
* How to (quickly) filter out unsatisfiable (w.r.t.

planning problem) constraint sets?



(achilles-and-agamemnon-quarrel)
(zeus-tricks-agamemnon-into-attacking-troy)
(issues-a-challenge paris)
(challenge-taken-up menelaus paris)
(single-combat-ends-divine-intervention paris menelaus)
(athena-tricks-tojans-into-breaking-peace)
(trojans-driven-back-to-walls-of-troy)
(hector-talks-with-his-wife)
· · ·
(battle-begins-at-dawn)
(achaeans-driven-back-to-plain)
(achaeans-driven-back-to-wall)
(battle-ends-at-nightfall)
· · ·
(priam-holds-funeral-for-hector)



In CT : E (wounded hector)
E (dead sarpedon)
(trojans-losing) SB (night)
(fighting hector) SB (night)
(night) SB (achaeans-losing)
(not (wounded hector)) SA (wounded hector)
. . .

In CF : A (not (dead sarpedon))
(achaeans-losing) SB (fighting hector)
(night) SB (trojans-losing)
AMO (battle-at-walls-of-troy)
. . .



Example: Bounding preferences

* Given a set of of weighted soft trajectory
constraints, what is the max weight subset that
is simultaneously satisfiable by any plan?

* To compute an upper bound,
> find unsatisfiable subsets of constraints; and
> solve a weighted hitting set problem.

* How to (quickly) determine if constraint subsets
are unsatisfiable (w.r.t. planning problem)?



Plan constraint propagation
* Rules for inferring new constraints – or a

contradiction – from sets of constraints.

* Rules form an algorithm that is (almost)
polynomial in the size of the constraint set.

* Satisfiability w.r.t. planning problem: Extract
from the problem plan constraints that are
necessarily true of every executable action
sequence, and test in conjunction.

* Resulting test is fast and sound, but not
complete.



Extraction
* Constraint extraction from the problem can use

a variety of relaxations (e.g., delete-free).
> E.g., p SB q if p is a (causal) landmark of q.

* Conditional constraints:
> Nα and pre(a)→ α or eff(a)→ α means a can

not be part of any plan (Da, “disallow a”).
> Disallowing more actions can make more

constraints hold: e.g., disallowing
{a | p ∈ add(a)} − {a | q ∈ pre(a)} implies
q SB p.



Propagation Algorithm

* PROPAGATE(C, X )
> Input: Sets of trajectory constraints (C) and

conditional constraints (X ).
> Returns: Contradiction, or extended set of

constraints (optionally: proof).
* Inferred constraints only over state formulas

present in the input.
* Separate procedure for checking contradiction

with AMO constraints.



1. Transitivity over SB and→:
> α SB β and β SB γ implies α SB γ.
> α SB β and γ → β implies α SB γ.
> β → α and β SB γ implies α SB γ.

2. Aα and mutex(α, β) implies Nβ.
3. α SB β and β SBα implies Nα.
4. α SB β and Nα implies Nβ.
5. α SB β and β NAα implies Nβ.

6. Aα and del(a) negates α implies Da.
7. Nα and pre(a)→ α or add(a)→ α implies Da.
8. For 〈ϕ,A〉 ∈ X , when Da for all a ∈ A assert ϕ.



* Rules 1–7 are iterated until fixpoint.

8. EG, where G is the goal.
9. α SB β and Eβ implies Eα.

10. α→ β and Eα implies Eβ.

* Rules 9–10 are iterated until fixpoint.

11. Eα and Nα is a contradiction.
12. Eα, Eβ, αNA β and β NAα is a contradiction.
13. CHECKAMO(C, D).



* AMOα implies plan can include:
> at most one action changing α from true to

false (ActChF(α));
> at most one action changing α from false to

true (ActChT(α)); none if α initially true.
* Find a set of atoms R′ such that Ep ∈ C ∀p ∈ R′

and no action adds more than one atom in R′.
* Find a set S = {A1, . . . ,An} such that {a 6∈ D
| p ∈ R′,p ∈ add(a)} is covered by

⋃
Ai∈S Ai and

each Ai = ActChF(α) or Ai = ActChT(α)) for
some AMOα ∈ C.

* If |R′| > |S|, this is a contradiction.



Results: Runtime
1

e
−

0
4

1
e

−
0

3
1

e
−

0
2

1
e

−
0

1
1

e
+

0
0

Problems (increasing size)

T
im

e
/t

e
s
t 

(s
e

c
o

n
d

s
)

* Alternative: Compiling constraints into planning
problem and checking unsolvability with h2.



Results: Inconsistent sets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Both

Compilation + h^2

Propagator

Problems (increasing size)

#
 I
n
c
o
n
s
is

te
n
t 
s
e
ts

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0



Results: Bounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Propagator

Compilation + h^2

Compilation + h^1

l.
b
. 
a
s
 %

 o
f 
h
ig

h
e
s
t 
l.
b
.

0
2

0
4

0
6

0
8

0
1

0
0



Conclusions



* “Pinching one idea is plagiarism. Pinching two is
research.”

* Combining solvers
> Interfaces: what is required of/by the “other”?

* ...and combining ideas.


