CP’18 Workshop on Constraints & Al
Planning

Planning with State and
Trajectory Constraints

,,,,,,,,,

lact2r-7

* Action pre- and post-conditions impose a
fundamental constraint on consecutive states.
* What if we need additional constraints

> on some or all states traversed by the plan; or
> on the state sequence?

* Part 1: Planning with state constraints.
> (Benders’-like) Decomposition: state
constraint satisfiability decided by a “black
box” solver, planning by heuristic state-space
search.
> Constraint-aware heuristics.

* Part 2: Planning with trajectory constraints.
> (LTL-like) plan constraints.
> Plan constraint-specific propagation.

Australian
National

University

Part 1

State constraints

S S S
0 act 1 act, act, n
_ e

* Constraints on the valuations of state variables
that must be satisfied
> in every state;
> in the goal state; or
> as part of an action’s precondition.

x Partition state variables into:

> primary: subject to action effects, inertia.
> secondary: determined by constraints only.

* Secondary variables may be of any type.

* Primary/secondary variables are linked by
(switched) constraints.

Example: Power Network
Re-Configuration

* Discrete actions (e.qg.,
open/close switch).

* Power flow is a (non-linear)
function of the global state.

* System stabilises after each
discrete action.

* Not all states are valid.

* Primary: proposition yj for line (/, j) on/off.

* Secondary: generation (controllable), voltage &
power flow, bus fed status.

* Constraints:

> Power flow equations
> Generation and line limits
> Goal: target buses fed
* Switched constraints:
> ¥ — Py = Gi(Vai + Vi) — 9i(Vaive + Vivy)
—b;i(ViiVRi — VRiVj)
> Yi— Pji=-..
>)i = Pj=Qqj=pi=qi=0

Example: Vehicle routing

* Trucks carry goods from
depots to customers. ‘
* Capacity constraints. a

* Possibility of trans-

shipments. '

+ Time constraints are not o
modelled.

Australian
lational

5 University

* Primary: at, € Loc, visit,; € {T, F},
xsyv €{T, F}.
> Move v to [sets visit, ; := T
> Move v to X first sets xs,., := T if visit, x,
and xsy, = Tifat, =X
* Goal constraints:
> >, Xvsi = Qsi, S € Dep, | € Cust
> Y < Xvsi =Y, Yvv. dep(v) #s,dep(V) =s
> ZS)/XV,S,/ + Zv’ Yvv < 5v
> —wvisity; = Xy sy =0
> XSy — Yy =0
> at, = dep(v).

Example: Axioms

* PDDL axioms are logical state constraints,

connecting primary and secondary (derived)
finite-domain variables.

* Domain axioms are a stratified ASP theory.

nliglig

]
=1
=
]
=1
=
]
=1

=l

reach, < at,

reach, < reach, A adj,; A not blocked,
blocked, < stone,

blocked, <+ wall,

* A* search over the primary state-space, but also
solving a CSP (of some kind) for every state.

x If it's “Benders’-like”, where are the cuts?

Complexity

* Observation (due to Peter Jonsson): (ground)
classical planning remains in PSPACE even if
deciding the validity of a transition (s, a, §') is
PSPACE-hard.

* Secondary variables are “existential”
> Satisfiability is a function of the primary state.
> Can be reduced to a plain STRIPS/SAS
problem, with exponential blow-up.
* Switched linear constraints can encode arbitrary
formulas over the primary state — blow-up is
unavoidable (Nebel, 2000).

Australian
National

University

Sokoban (with and without axioms)

of Problems solved within X

—— Axioms, PDB

- Axioms, blind

STRIPS, PDB

STRIPS, blind

T
100 10k
Node expansions

—— Axioms, PDB

- Axioms, blind

STRIPS, PDB

STRIPS, blind

T
0.1s 1s im
Time (sec.)

=V¥/dy ¥0 / 02

- Vedy ¥0 / 02

e

~VENE ¥0 /02

~Ve/de ¥0 /02

—Vverde ¥0 /02

F s i

-Vverde v0 /e

~VP/dy 0L/ L0

St

—Vedy 0L/ L0

~VEME 0L/ L0

At

-Vverde 0k / L0

Foo

=verde oL/ L0

Vy/Hy ¥0/ 8L

Vb e/ se

—VeMY ¥0 /81

-vedvel/se

- VEME ¥0 /8L

~VeMdezh/se

(state constraints)

h"max (state constraints)

PDB
Imcut

state constraints)
)
)
)

classical
classical
classical
(classical)

Ve v0 /81

(
(
X
(

-verdeeh/se

h+
h*ma;
PDB
mé&s

-Vverde v0 /81

=
8
..m
7

=
o7
g2

c
55

~verdeel/se

T T T T T T T
oL WL M00L MOk AL 00t ok
pajenjens salels

Vehicle routing (no trans-shipment, but two goods

types)

Heuristics

* Classical planning heuristics applied to the
primary state only are blind to implicit
preconditions — even goals — imposed by state
constraints.

* How to make them constraint-aware?

* Admissible planning heuristics are generally
based on optimally solving a problem relaxation.

> Monotone (“delete-free”) relaxation.
> Abstraction.

Constraints on relaxed states

* Monotone relaxation:
> State variables have a set of values;
> action effects add values to this set.

* Abstraction
> Projection onto a subset of state variables.
> Other variables are ignored; they can be

assumed to have any value.

* A relaxed (abstract) state s™ corresponds to a
set of states; constraints are satisfiable in s* iff
satisfiable in any state in this set.

Australian
National
: University

Vi — fG
Yo — fa
fa

i = Paca
Y2 — Pas
PGa 1 PBa

Pas

Paca

Goal: fa

A1

pac = 0

pa = 0
7fa+ PaG + Pas
5fg + PBa

10

1

stralian

Weaker (tractable) relaxations

* Deciding constraint satisfiability in a relaxed
state s* requires solving a CSP over both
primary (discrete) and secondary variables.

* Relaxation is sound (admissible) as long as s*
is declared invalid/non-goal only if constraints
are unsatisfiable in all corresponding states.

> Apply only (tractable) constraint propagation
(Francés & Geffner).

> Discard all switched constraints whose
triggering condition is not necessarily true in
the relaxed state.

Australian
National

University

Results

Node (heuristic) evaluations

PSR

o |
R
8
s
2
©
Qo |
S N
2
s
E o
& — h+/PPA*
---- PDB/PPA*
--- h"max/A*
~~~~~~ Blind
o
1 100 1000 10000 |

Nodes evaluated

Percent of (solvable) instances

30

25

20

15

10

Vehicle routing

— h+/PPA* e
PDB/PPA* s

---  h"max/A* )
Blind !

T
100000

T T
1000 10000
Nodes evaluated




Australian
National

University

Runtime

PSR Vehicle routing

— he/PPA* - i
. ; — h+/PPA -
"o PDB/PPA 89| ---- PDB/PPA* i
o]~ mmava -== h*max/A* 1
| e Blind ] i /
g v 2Q-| - Blind /
s & ---- Symba-2 /
£ £o /
2. g !
% N § /},
8 8% -
5 = /
k= 2 /
B Be /
b S
o
T T

T T T
0.1 1 10 100 1000 T !

T T T
. 0.1 1 10 100 1000
Time (seconds) Time (seconds)



No-good learning

* Type 0
> When encountering an invalid state s, extract
a (small) condition ¢ on s primary that is
sufficient to make C unsatisifable.
> Test no-goods in future states to avoid calling
constraint solver.
* Type 1
> Regress ¢ through the action that led to s, and
test before generating successor states.

* Note: Did not consider learning goal conditions.



no-good learning (time in sec.)

Australian
National

University

PSR Hydraulic
Blocksworld

(=3
o
° 2 o
81| o Type 0 o o Type 0 o6
|| + Type i + Type 1
8
+ S =
g/ 2
©
E
= o]
=2
£
o €
+ + 3
N + '§ —
® ¢
- @O o 2
+
ol
g,
di\ T T T T T T T T
0.1 1 10 100 1000 0.1 1 10 100

No learning (time in sec.) No learning (time in sec.)



Australian
National

University

Part 2



Trajectory constraints

* Constraints on the sequence of states visited by

the plan.
* For example, “p must hold sometime before q”:

rpﬁqi L [Pa)

* Plan constraints (introduced in PDDL3) are a
limited subset of Linear Temporal Logic (LTL).



Australian
» National

niversity

Plan constraints (PDDL3 & extra)

Fa « true in final state
Ao « true in all states
Ea « true in some states

aSB 5 | a true in some state strictly before the first state
where [ true, or 3 never true

aSA 5 | a true in some state after last state where 3 true,
or a A 5 in that state

AMOq« | o true in at most one contiguous subseq of states

Na -Ea
aNA 5 | o false in every state after first state where  true

where a and 3 are state formulas.



Example: Story variations

* Encode the events of a story (The llliad) as
actions.

* The original story is one possible plan.
> Cr: A set of trajectory constraints that are true
of this plan.
> Cr: A set of trajectory constraints that are
false of this plan.
* Sample S ¢ Crand D C Cp, try to find a plan
that satisfies S U D. Repeat many times.
* How to (quickly) filter out unsatisfiable (w.r.t.
planning problem) constraint sets?



Australian
» National

niversity

achilles-and-agamemnon-quarrel)
zeus-tricks-agamemnon-into-attacking-troy)
issues-a-challenge paris)

challenge-taken-up menelaus paris)
single-combat-ends-divine-intervention paris menelaus)
athena-tricks-tojans-into-breaking-peace)
trojans-driven-back-to-walls-of-troy)
hector-talks-with-his-wife)

AN N N N N N S S

(battle-begins-at-dawn)
(achaeans-driven-back-to-plain)
(achaeans-driven-back-to-wall)
(battle-ends-at-nightfall)

(priam-holds-funeral-for-hector)



In Cr: E (wounded hector)
E (dead sarpedon)
(trojans-losing) SB (night)
(fighting hector) SB (night)
(night) SB (achaeans-losing)
(not (wounded hector)) SA (wounded hector)

In Cr: A (not (dead sarpedon))
(achaeans-losing) SB (fighting hector)
(night) SB (trojans-losing)

AMO (battle-at-walls-of-troy)



Example: Bounding preferences

* Given a set of of weighted soft trajectory
constraints, what is the max weight subset that
is simultaneously satisfiable by any plan?

* To compute an upper bound,
> find unsatisfiable subsets of constraints; and
> solve a weighted hitting set problem.

* How to (quickly) determine if constraint subsets
are unsatisfiable (w.r.t. planning problem)?



Plan constraint propagation

* Rules for inferring new constraints — or a
contradiction — from sets of constraints.

* Rules form an algorithm that is (almost)
polynomial in the size of the constraint set.

* Satisfiability w.r.t. planning problem: Extract
from the problem plan constraints that are
necessarily true of every executable action
sequence, and test in conjunction.

* Resulting test is fast and sound, but not
complete.



Extraction

* Constraint extraction from the problem can use
a variety of relaxations (e.g., delete-free).
> E.g., pSBqif pis a (causal) landmark of q.
* Conditional constraints:
> Na and pre(a) — « or eff(a) — o means a can
not be part of any plan (Da, “disallow &”).
> Disallowing more actions can make more
constraints hold: e.g., disallowing
{a|pecadd(a)} —{a| g € pre(a)} implies
qSBp.



Propagation Algorithm

* PROPAGATE(C, X)
> Input: Sets of trajectory constraints (C) and
conditional constraints (X).
> Returns: Contradiction, or extended set of

constraints (optionally: proof).
* Inferred constraints only over state formulas
present in the input.
* Separate procedure for checking contradiction
with AMO constraints.



1.

2.
3.
4.
5.
6.
7.
8.

Transitivity over SB and —:

> «SB S and J SB~y implies « SB.
> a«SBJ and v — g implies a SB~.
> [ — aand 5 SB~y implies a SB~.
Aa and mutex(«, 5) implies Ng.

a SB 5 and [ SB « implies Na.

a SB 8 and Na implies Nj.

a SB 3 and 5 NA « implies NG.

Aca and del(a) negates « implies Da.
Na and pre(a) — « or add(a) — « implies Da.
For (p, A) € X, when Da for all a € A assert .



11.
12.
13.

Rules 1-7 are iterated until fixpoint.

. EG, where G is the goal.
. aSB 8 and ES implies Ea.
. a — [ and E« implies ES.

Rules 9—-10 are iterated until fixpoint.

Ea and N« is a contradiction.
Ea, ES, aNA S and S NA « is a contradiction.
CHECKAMO(C, D).



* AMO« implies plan can include:
> at most one action changing « from true to
false (ActChF(«));
> at most one action changing « from false to
true (ActChT(«)); none if « initially true.
* Find a set of atoms R’ suchthatEpe CVp e R
and no action adds more than one atom in R'.

* Find aset S={A¢,...,Ay} suchthat {a¢ D
| p € R, pcadd(a)} is covered by J, s Ai and
each A; = ActChF(«) or A; = ActChT(«)) for
some AMO«a € C.

* If |R'| > |S]|, this is a contradiction.



Results: Runtime

1e+00
L

1e-04 1e-03
L

1e-01
L

Time/test (seconds)
19702

Problems (increasing size)

* Alternative: Compiling constraints into planning
problem and checking unsolvability with A2.



_trali:l-m

Results: Inconsistent sets

# Inconsistent sets

200

400 500

300

100

0

O Both -
E Compilation + h"2 ]
B Propagator —

— HEEQE = Cmm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problems (increasing size)



Results: Bounds

] |] [}

I

|

% or
‘q1Iseybly Jo % se q|



stralian
National

University

Conclusions



* “Pinching one idea is plagiarism. Pinching two is
research.”

* Gombining solvers
> Interfaces: what is required of/by the “other”?
* ...and combining ideas.



