Introduction to Planning

Malte Helmert

University of Basel

CP 2018 Workshop on Constraints and AI Planning

Quiz	Planning	Classical	PDDL	
0000				

POP QUIZ: Automata Theory

Quiz o●ooo	Planning 00000000	Classical 000000	PDDL 00000	
DFA F	op Quiz: 1	L		

Example

Given: a DFA MQuestion: Is L(M) empty?

How can we decide this? How difficult is it?

Quiz oo●oo	Planning 000000000	Classical 000000	PDDL 00000	
DFA	Pop Quiz: 2			

Example

Given: two DFAs M_1 and M_2 Question: Is $L(M_1) \cap L(M_2)$ empty?

How can we decide this? How difficult is it?

Quiz 000●0	Planning 000000000	Classical 000000	PDDL 00000	
DFA	Pop Quiz: <i>n</i>			

Example

Given: DFAs M_1, \ldots, M_n Question: Is $\bigcap_{i=1}^n L(M_i)$ empty?

How can we decide this? How difficult is it?

Quiz	Planning	Classical		PDDL	The End
oooo●	000000000	000000		00000	0
The	Complexity c	of Classical	Planning		

- Empty intersection for *n* DFAs is PSPACE-complete (Kozen 1977).
- It is a trivial syntactic variant of the plan existence problem for classical planning.
- Are we warmed up? Let's talk about planning!

Quiz 00000	Planning ●00000000	Classical 000000	PDDL 00000	

What is Planning?

Quiz	Planning	Classical	Numerical and Temporal	PDDL	The End
00000	0●0000000	000000		00000	O
Plann	ing				

Planning (pithy definition)

"Planning is the art and practice of thinking before acting." — Patrik Haslum

Quiz	Planning	Classical	Numerical and Temporal	PDDL	The End
00000	0●0000000	000000		00000	0
Plann	ing				

Planning (pithy definition)

"Planning is the art and practice of thinking before acting." — Patrik Haslum

Planning (more technical definition)

"Selecting a goal-leading course of action based on a high-level description of the world."

— Jörg Hoffmann

Quiz	Planning	Classical	Numerical and Temporal	PDDL	The End
00000	00●000000	000000		00000	O
T 1			1		

The Planning Research Landscape

- one of the major subfields of artificial intelligence
- → represented at major AI conferences (IJCAI, AAAI, ECAI)
 - annual specialized conference ICAPS
 - \approx 200–250 participants
 - before 2003: ECP (odd years) + AIPS (even years)
 - major journals: general AI journals (JAIR, AIJ)

00000	000000000	000000	00000	o Ine End
		10100.00		

Advertisement: ICAPS 2019

Come to ICAPS 2019!

- ICAPS wants to strengthen its ties to CP and OR
- submission deadline: Nov 16 (abstracts), Nov 21 (papers)
- Journal Presentation Track seeks planning-related papers from other research communities
 → submission deadline TBA, most likely in early 2019
- conference in July 2019 in Berkeley, CA, USA

Quiz	Planning	Classical		PDDL	The End
00000	000000000	000000		00000	0
N A	-	(DI .	(1)		

Many Flavors of Planning (1)

What happens when we act?

deterministic planning

 \rightsquigarrow action sequences in perfectly predictable environments

nondeterministic planning

 \rightsquigarrow uncertain action outcomes (qualitative uncertainty)

• probabilistic planning

 \rightsquigarrow ditto with quantitative uncertainty

... and others (e.g., adversarial and multi-agent)

This talk focuses on deterministic planning.

Quiz 00000	Planning 000000000	Classical 000000		PDDL 00000	
Manv	Flavors of I	Planning	(2)		

Modelling language complexity:

- classical: finite-domain state variables
- numerical: + real-valued state variables
- temporal: + concurrent and overlapping actions

... and many fine-grained modelling features, normal forms, etc.

Quiz 00000	Planning 000000000	Classical 000000		PDDL 00000	
Many	Flavors of	Planning	(3)		

Solution quality requirements:

- optimal planning: only best possible solutions will do
- satisficing planning: optimality not mandatory; better quality preferred

... and many further variations (bounded suboptimal, cost-bounded, anytime, oversubscription, net benefit...)

classical planning:

can be seen as finding paths in implicitly defined digraphs

classical planning:

can be seen as finding paths in implicitly defined digraphs

classical planning:

can be seen as finding paths in large implicitly defined digraphs

Example problem sizes:

- elevator control: $6.92 \cdot 10^{19}$ reachable states
- greenhouse automation: $1.68 \cdot 10^{21}$ reachable states
- transportation logistics: $6.31 \cdot 10^{218}$ reachable states

Quiz 00000	Planning 0000000●	Classical 000000	PDDL 00000	
Fyamn	le· FreeCell			

image credits: GNOME Project (GNU General Public License)

Quiz	Planning	Classical	PDDL	
		00000		

Classical Planning

Quiz 00000	Planning 000000000	Classical 0●0000	PDDL 00000	
Classic	al Planning	Tasks		

• state variables:

 $x \in \{a, b, c\}$, $y \in \{a, b\}$, $z \in \{a, b, c\}$

Quiz 00000	Planning 000000000	Classical 00000	PDDL 00000	
Classi	cal Plannin	g Tasks		

- state variables:
 - $x \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$, $y \in \{\mathtt{a}, \mathtt{b}\}$, $z \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$
- initial state:

$$\{x \mapsto a, y \mapsto a, z \mapsto a\}$$

Quiz 00000	Planning 000000000	Classical 000000	PDDL 00000	
Classi	ical Plannin	g Tasks		

- state variables:
 - $x \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$, $y \in \{\mathtt{a}, \mathtt{b}\}$, $z \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$
- initial state:

$$\{x \mapsto a, y \mapsto a, z \mapsto a\}$$

$$\{x \mapsto c, z \mapsto b\}$$

Quiz 00000	Planning 000000000	Classical 0●0000	PDDL 00000	
Class	ical Plannin	g Tasks		

- state variables:
 - $x \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$, $y \in \{\mathtt{a}, \mathtt{b}\}$, $z \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$
- initial state:

$$\{x \mapsto a, y \mapsto a, z \mapsto a\}$$

 $\{x \mapsto c, z \mapsto b\}$

• actions a.k.a. operators:

$$\begin{array}{rrrr} a_1: & x\mapsto a, \ y\mapsto a & \stackrel{4}{\rightarrow} & y:=b, \ z:=c\\ a_2: & x\mapsto a, \ z\mapsto b & \stackrel{3}{\rightarrow} & z:=b \end{array}$$

. . .

Quiz 00000	Planning 000000000	Classical 00000	PDDL 00000	
Classi	cal Plannin	g Tasks		

- state variables:
 - $x \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$, $y \in \{\mathtt{a}, \mathtt{b}\}$, $z \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$
- initial state:

$$\{x \mapsto a, y \mapsto a, z \mapsto a\}$$

 $\{x \mapsto c, z \mapsto b\}$

• actions a.k.a. operators:

$$\begin{array}{rcl} a_1: & x \mapsto \mathbf{a}, \ y \mapsto \mathbf{a} & \stackrel{4}{\rightarrow} & y := \mathbf{b}, \ z := \mathbf{c} \\ a_2: & x \mapsto \mathbf{a}, \ z \mapsto \mathbf{b} & \stackrel{3}{\rightarrow} & z := \mathbf{b} \end{array}$$

Problem:

. . .

- find sequence of actions transforming initial state to state consistent with the goal
- objective: minimize sum of action costs

Quiz	Planning	Classical	Numerical and Temporal	PDDL	The End
00000	000000000	000000		00000	O
Forma	lisms for (Classical P	lanning Tasks (1)		

Many formalism variants:

Finite-domain representation a.k.a. SAS⁺

what we just saw

transition normal form (TNF)

- in each action, precondition variables = effect variables
- goal must describe single state

 \rightsquigarrow variants with and without action costs

Quiz	Planning	Classical		PDDL	The End
00000	00000000	000000		00000	O
Formali	isms for Cla	ssical Pla	anning Tasks (2)		

F

Many formalism variants:

STRIPS

- $\bullet\,$ all variable domains are $\{\textbf{T},\textbf{F}\}$
- only $v \mapsto \mathbf{T}$ in action preconditions and goal

• set-based notations:

$$a: x \mapsto T, y \mapsto T \xrightarrow{5} w := F, y := F, z := T$$

written as
 $pre(a) = \{x, y\}, add(a) = \{z\}, del(a) = \{w, y\}, cost(a) = 5$

 \rightsquigarrow variants with and without action costs

Quiz	Planning	Classical		PDDL	The End
00000	000000000	000000		00000	0
Formal	isms for Cl	assical DI	anning Tacks (3))	

ຮ

Many formalism variants:

ADL

- $\bullet\,$ all variable domains are $\{\textbf{T},\textbf{F}\}$
- preconditions and goal are logical formulae over state variables
 - precondition $x \mapsto \mathbf{T}, y \mapsto \mathbf{T}$ becomes $x \wedge y$
 - but not limited to conjunctions: $(x \lor \neg(y \lor \neg z))$ etc.
- conditional (state-dependent) effects

• $(y \lor z) \triangleright (x := \mathbf{T}), \ (\neg x) \triangleright (y := \mathbf{F})$

 \rightsquigarrow variants with and without action costs

Quiz	Planning	Classical		PDDL	The End
00000	00000000	000000		00000	O
Almonit	hma far C	lassical D	lanning		

Algorithms for Classical Planning

main algorithmic approaches for classical planning:

- heuristic state-space search (A* etc.)
- symbolic search (BDDs etc.)
- compilation to SAT

Quiz 00000	Planning 00000000	Classical 000000	Numerical and Temporal	PDDL 00000	

Numerical and Temporal Planning

Quiz	Planning	Classical	Numerical and Temporal	PDDL	
00000	000000000	000000	0●0000	00000	
Nume	rical Planni	ing			

differences to classical planning:

- may have numerical state variables (usually in \mathbb{R} , unbounded)
- numerical conditions in action preconditions and goal
 - often restricted to comparisons to constants
 - examples: v < 10, $v \le 8.5$, v = 0, $v \ge 7$, v > -4
- numerical action effects
 - often restricted to assignment and addition of constants
 - examples: v := 5, v := v + 3, v := v 0.3
- numerical state variables used in objective functions
 - replacing/generalizing action costs
 - in planning lingo: metrics

 \rightsquigarrow again, many variations (most of them undecidable)

Quiz 00000	Planning 000000000	Classical 000000	Numerical and Temporal	PDDL 00000	
Numer	ical Plannir	ng Tasks			

- state variables: $x \in \{a, b, c\}, y \in \{a, b\}, u \in \mathbb{R}, v \in \mathbb{R}$
- initial state:

$$\{x \mapsto a, y \mapsto a, u \mapsto 0, v \mapsto -4\}$$

- goal: $\{x \mapsto c, v < 40\}$
- actions a.k.a. operators:
 - $a_1: x \mapsto a, v = 10 \rightarrow y:=b, u:=3$
 - $a_2: x \mapsto a, u \leq 10 \rightarrow u:= u+2$

Problem:

. . .

- find sequence of actions transforming initial state to state consistent with the goal
- objective: minimize/maximize the given metric (e.g., 3u v)

Quiz	Planning	Classical	Numerical and Temporal	PDDL	
00000	000000000	000000	000●00	00000	
Temp	oral Plannii	ng			

differences to classical planning:

- actions have (real-valued) durations
- solutions are not sequences, but schedules of actions
 - actions may overlap
 - objective usually to minimize makespan
- actions have three sets of preconditions:
 - at start, over all, at end
- actions have two sets of effects:
 - at start, at end

 \rightsquigarrow variations include temporally simple and temporally expressive

Quiz	Planning	Classical	Numerical and Temporal	PDDL	
00000	000000000	000000	0000●0	00000	
Temp	oral Plannii	ng Tasks			

- state variables: $x \in \{a, b, c\}, y \in \{a, b\}, z \in \{a, b, c\}$
- initial state:

$$\{x \mapsto a, y \mapsto a, z \mapsto a\}$$

. . .

- $\{x \mapsto c, z \mapsto b\}$
- durative actions:

$$\begin{array}{rcl} a_1: & x \stackrel{\text{at start}}{\mapsto} a, \; x \stackrel{\text{over all}}{\mapsto} b, \; y \stackrel{\text{at start}}{\mapsto} a & \stackrel{10}{\to} \\ & x \stackrel{\text{at start}}{:=} b, \; x \stackrel{\text{at end}}{:=} a, \; z \stackrel{\text{at end}}{:=} c \end{array}$$

Quiz 00000	Planning 000000000	Classical 000000	Numerical and Temporal	PDDL 00000	
Temp	oral Plannir	ng Tasks			

- state variables:
 x ∈ {a, b, c}, y ∈ {a, b}, z ∈ {a, b, c}
- initial state:

$$\{x \mapsto a, y \mapsto a, z \mapsto a\}$$

- goal:
 - $\{x \mapsto c, z \mapsto b\}$
- durative actions:

$$\begin{array}{rcl} a_1: & x \stackrel{\text{at start}}{\mapsto} a, \; x \stackrel{\text{over all}}{\mapsto} b, \; y \stackrel{\text{at start}}{\mapsto} a & \stackrel{10}{\to} \\ & x \stackrel{\text{at start}}{\coloneqq} b, \; x \stackrel{\text{at end}}{\coloneqq} a, \; z \stackrel{\text{at end}}{\coloneqq} c \end{array}$$

Problem:

- find schedule of actions transforming initial state to state consistent with the goal
- objective: minimize makespan of schedule

Quiz	Planning	Classical	Numerical and Temporal	PDDL	The End
00000	000000000	000000		00000	O
Comb	ining Nume	erical and	Temporal Plann	ing	

- numerical and temporal features often used together
- additional feature: continuous change
 - effect of the form $v := v + 0.1 \cdot \Delta t$

→ hybrid planning

Quiz	Planning	Classical	PDDL	
			0000	

PDDL & Domain-Independent Planning

Quiz 00000	Planning 00000000	Classical 000000	PDDL o●ooo	
PDDL				

PDDL: Planning Domain Definition Language

- high-level representation of planning tasks
- standard used in planning community
- LISP-based syntax
- covers all formalism I described (and more)
- parametric description based on first-order logic
- almost all planning algorithms begin by grounding into one of the representations I showed

Quiz	Planning	Classical		PDDL	The End
00000	000000000	000000		oo●oo	O
Doma	ain-Indepen	dent Plan	ning		

strong focus of planning mainstream on domain-independence:

- one planning algorithm for all domains
- "stupid" models

Modeling Maxim

"Physics, not advice."

— Drew McDermott

Quiz	Planning	Classical	Numerical and Temporal	PDDL	The End
00000	000000000	000000		ooo●o	0

The International Planning Competition

IPC: International Planning Competition

- competition for planning systems
- focus on blind evaluation on new problems
- currently every 3–4 years
 - → most recently 2008, 2011, 2014, 2018
- different tracks for different levels of expressiveness
- different tracks for satisficing vs. optimal planning
- source of standard benchmark suite in planning
 - $\rightsquigarrow~$ 100s of domains, 1000s of tasks

00000	00000000	000000	00000	o
	וסו			

PDDL and Planner Demo: FreeCell

image credits: GNOME Project (GNU General Public License)

Quiz	Planning	Classical	PDDL	The End
				•

Thank you for your attention!