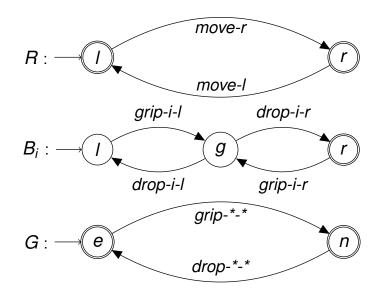


Sequencing Operator Counts (Redux)

Toby Davies Adrian Pearce **Peter J. Stuckey** Nir Lipovetzky

The University of Melbourne and NICTA

27th August 2018


- A new hybrid approach to planning
- Based on logic-based benders decomposition
 - "Guess" the number of uses of each operator
 - Sequence the use the operators to achieve the goal
 - Update the information used in "guessing"
- Only somewhat competitive, but a potential new direction
- Originally presented at ICAPS 2015

The Planning Problem

Find a sequence of operators which:

- Satisfies multiple Domain Transition Graphs (DTGs).
- Has minimum cost.

- Forward (and backward) state-based search
- Planning-as-SAT
- Partial-order planning

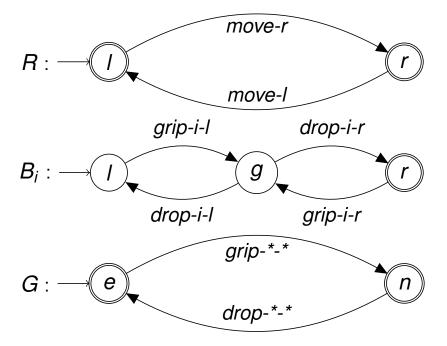
- Encode a number of transition "layers" as a SAT formula.
- Incrementally extend the formula as needed.
- How do you prove optimality?

- A* with a relaxation (heuristic) gives a LB.
- By expanding minimum LB state, we can prove optimality.
- How do you handle side constraints?

Operator Counting Heuristics

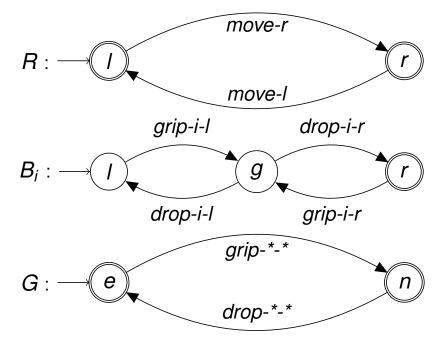
minimize
$$\sum_{o \in O} c(o) \cdot Y_o$$

$$\sum_{o \in LM} Y_o \ge 1 \qquad \forall LM$$


$$\sum_{o \in \mathsf{prod}(p)} Y_o - \sum_{o \in \mathsf{cons}(p)} Y_o = \Delta_p \quad \forall p$$

 Use a MIP with Y_o variables which count each operator o.

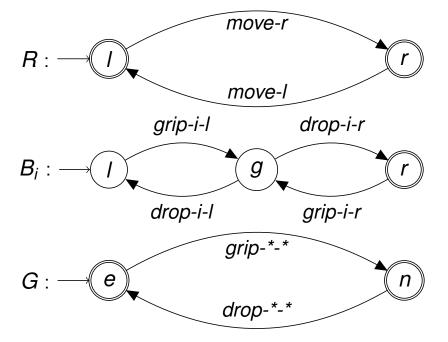
NICTA


- Heuristics can be combined, often strictly dominating the components.
- The MIP solution gives a heuristic estimate; and
- An assignment to the *Y*_o variables.
- "OpSeq" incorporates action budgets from an action counting heuristic, can explain failure in a way that a MIP can understand^{/20}

Sequencing operator counts

 C(o) = grip-1-l: 1 grip-2-l: 1 move-l: 1 move-r: 1 drop-1-r: 1 drop-2-r: 1 otherwise: 0 NICTA THE UNIVERSITY OF MELBOURNE

Sequencing operator counts



C(o) = grip-1-l: 1 grip-2-l: 1 move-l: 1 move-r: 1 drop-1-r: 1 drop-2-r: 1 otherwise: 0

8/20

NICTA

Sequencing operator counts

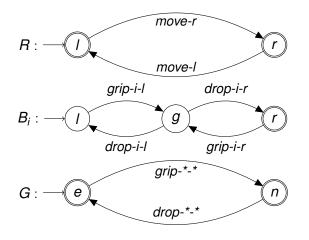
 ✓ C(o) = grip-1-l: 1 grip-2-l: 1 move-l: 1 move-r: 2 drop-1-r: 1 drop-2-r: 1 otherwise: 0 NICTA

8/20

A (Disjunctive Action) Landmark is a necessary condition on the set of operators in a plan.

$$Y_1 + \cdots + Y_n \ge 1$$

or


$$[Y_1 \ge 1] \lor \cdots \lor [Y_n \ge 1]$$

"at least one of these operators occurs at least one time"

Generalized Landmarks (GLMs)

$[Y_1 \ge k_1] \lor \cdots \lor [Y_n \ge k_n]$

The flaw we identified earlier:

$$[Y_{move-r} \ge 2]$$

10/20

NICTA

Domain Constraints

Bounds literals ([$Y_o \ge k$]) are not built in to MIPs, To define their relationship with the Y_o variables, we add:

$$[Y_o \ge k] \le [Y_o \ge k - 1]$$

 $Y_o \ge \sum_{i=1}^{\infty} [Y_o \ge i]$
 $Y_o \le M[Y_o \ge k] + k - 1$

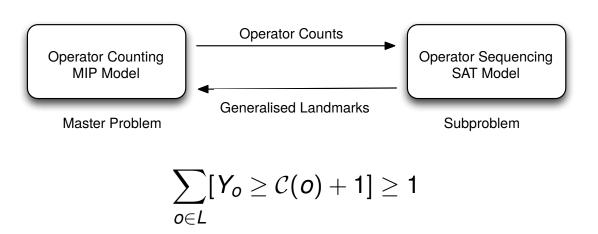
- $[Y_o \ge k] \Rightarrow [Y_o \ge k-1]$
- *n* bounds literals are set, then $Y_o \ge n$;
- if k or more operators occur, [Y_o ≥ k] must be set.

We then lazily create the bounds literals when they are mentioned in a GLM.

Theorem

There exists a set of generalized landmark constraints such that solving a MIP with these constraints will compute $h^*(s_0)$.

Proof.


With optimal operator count C, either:

- We have found a plan projection; or
- We can add

$$\sum_{o \in O} [Y_o \geq \mathcal{C}(o) + 1] \geq 1$$

and re-optimise to get a new count.

Logic-Based Benders Decomposition

 $\mathcal{C}: \mathcal{O} \to \mathbb{N}$

NICTA

We use the at-most-k constraint \leq_k encoded into SAT. Add **assumptions** to SAT-planning model for each upper-bound $Y_o \leq C(o)$:

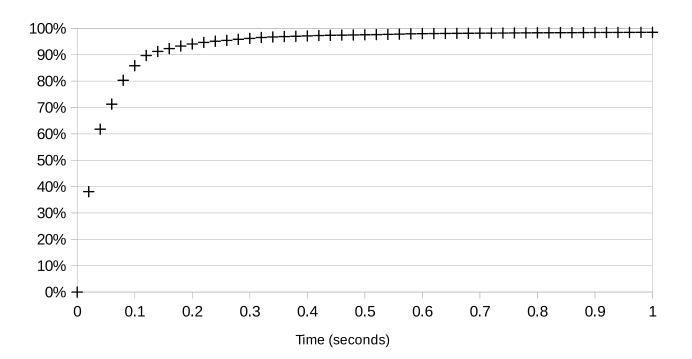
 $\neg [Y_o \geq \mathcal{C}(o) + 1]$

When UNSAT is proved, the solver identifies a subset of the assumptions responsible for failure.

14/20

$$\begin{split} & [Y_{grip-1-r} \ge 1] + [Y_{drop-1-l} \ge 1] + [Y_{grip-1-l} \ge 2] + [Y_{drop-1-r} \ge 2] + \\ & [Y_{grip-2-l} \ge 2] + [Y_{drop-2-r} \ge 2] + [Y_{grip-2-r} \ge 1] + [Y_{drop-2-l} \ge 1] + \\ & [Y_{move-l} \ge 2] + [Y_{move-r} \ge 2] \ge 1 \end{split}$$

VS


$$\begin{split} & [Y_{grip-1-r} \geq 1] + [Y_{drop-1-l} \geq 1] + [Y_{move-r} \geq 2] + [Y_{drop-2-l} \geq 1] + \\ & [Y_{grip-2-r} \geq 1] + [Y_{move-l} \geq 2] + [Y_T \geq 7] \geq 1 \end{split}$$

NB: Y_T is the count of a "fake" operator T: the total operator count.

15/20

NICTA

Generating GLMs is surprisingly efficient

NICTA

	OpSeq			Нрр			SymBA*-2		
Benchmark	С	=	Q	С	=	Q	С	=	Q
barman	0	0	9.37	0	0	9.14	11	20	20.00
elevators	11	11	19.38	0	0	16.47	19	20	20.00
nomystery	5	10	18.33	5	8	8.00	15	18	19.82
openstacks	0	0	5.52	0	0	5.52	20	20	20.00
parcprinter	20	20	20.00	20 2	20	20.00	17	17	18.63
pegsol	2	5	15.97	0	0	12.43	19	20	20.00
scanalyzer	1	3	7.99	3 -	14	18.93	9	10	14.32
sokoban	0	2	10.70	1	2	11.27	20	20	20.00
transport	5	13	19.47	0	0	12.41	11	14	17.81
visitall	14	20	20.00	5	13	19.21	12	12	15.70
woodworking	20	20	20.00	18 ⁻	18	19.95	19	19	19.74
Total	78	104	166.74	52 7	75	153.33	172	189 2	206.02

Coverage (C)

Number of best bounds (=)

Dual quality scores (Q)

This is a fundamentally new approach to planning, splitting planning into an operator counting problem, and a sequencing problem.

Any **explaining** constraint or theory can be added to the sub-problem, and can be re-written into the assumptions

This has applications in:

- Temporal planning.
- Planning with resources.
- Hybrid planning/scheduling problems.

- Better SAT/CP encoding for the scheduling problem
- Better GLM (conflict) minimization
- Better operator count encodings for MIP
- Adjusting MIP or SAT search heuristics

The really exciting part of this work for me is

- Once we have fixed operator counts: Temporal planning \simeq Optional task scheduling
- We have very good CP technology for Optional task scheduling!
 - including the ability to explain failures
- So Temporal planning should be tackled this way!
- LESSON: dont let your PhD students graduate too quickly!